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Abstract

We model associative networks that capture how a decision maker enlarges

her consideration set through the mental association between alternatives,

and demonstrate how this model serves as a toolbox to understand the

impact of mental association on decision making. As a proof of concept,

we characterize this model within a random attention framework and

demonstrate that all the relevant parameters are uniquely identifiable.

Notably, in a novel choice domain where not all perceivable alternatives are

feasible, the presence of infeasible yet perceivable alternatives can influence

the choice frequencies of alternatives through mental association.
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1 Introduction

Memory and attention are fundamental cognitive processes that are critical in
decision making (Simon, 1955; Camerer, 1997; Payne, Bettman, and Johnson,
1993). The impact of these processes on decision making has been the subject of
extensive research in recent years (Bordalo, Gennaioli, and Shleifer, 2020, 2022).
Among the various patterns of memory, mental association is a crucial phenomenon
that links the recall of one item to another based on individuals’ prior experience
or learning. For instance, in the context of consumer behavior, a consumer may
associate Margarita with lemon-lime soda due to their similarity in color. Mental
association has been widely studied in various fields, including psychology and
marketing, and is shown to play a crucial role in consumer behavior (Loewenstein
and O’Donoghue, 1997). In this paper, we adopt a choice-theoretical perspective
to investigate the impact of mental association on decision making and develop a
choice model to capture the effects of this cognitive process.

To provide a motivation for our choice model, consider the case of an athlete
who just completed her training and is now standing in front of a vending machine.
She initially notices a new version of Pepsi Cola. Before she makes the purchase,
she recalls that a similar version of Coca Cola has recently been launched and is
also available in the vending machine. After comparing the two options, she decides
to purchase Coca Cola instead. The decision-making process in this scenario is
influenced by the decision maker’s (DM) mental association between Pepsi Cola
and Coca Cola, as the initial attention towards Pepsi Cola leads to a consideration
of other relevant options and ultimately results in the selection of Coca Cola.

Mental association is a cognitive process that enables DMs to expand their
consideration set by linking relevant alternatives that may not have been initially
considered. We capture this cognitive process through the use of associative
networks, a conceptual model first introduced in cognitive psychology (Anderson
and Bower, 1973; Anderson, 1996; Raaijmakers and Shiffrin, 1981) and widely
applied in the marketing literature (Keller, 1993; Teichert and Schöntag, 2010;
Brandt, De Mortanges, Bluemelhuber, and Van Riel, 2011; Cunha Jr, Forehand,
and Angle, 2015). In an associative network, objects (nodes) are interconnected
based on their semantic or conceptual relationships. When a particular node or
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input is activated, the network retrieves related nodes by spreading activation
through the interconnected links. In our study, we employ the associative network
as a descriptive model that captures how the attention given to one alternative
can trigger the DM to pay attention to another alternative, abstracting away
from the underlying conceptual similarities between alternatives that result in the
association. More specifically, in our model, a link from alternative x to y indicates
that the attention given to x can prompt the DM to further consider y.

Notably, the mental association process is not limited to feasible alternatives
and may also be triggered by infeasible but perceivable options. Building on the
previous example, even if Pepsi Cola is sold out in the vending machine, the athlete’s
attention towards it may still lead to the consideration of Coca Cola. Section 2
extends the choice domain to include such infeasible but perceivable alternatives.
Specifically, we introduce the concept of extended menus, which comprises
two distinct sets of alternatives: A, containing all feasible alternatives, and S,
comprising the infeasible ones. The union of A and S comprises all perceivable
alternatives. In the context of a vending machine, A ∪ S can be considered as all
the drinks displayed, with A comprising those that are available and S containing
those that are sold out. Although the DM cannot select any alternative from S, its
presence can influence the DM’s attention through association, thereby impacting
the DM’s choices. The primitive studied in this paper is a random choice rule,
which is a function that maps every extended menu (A, S) to a distribution over
A. This distribution represents the DM’s choice frequencies of alternatives in A

when confronted with the extended menu (A, S).

Section 3 introduces our choice model. Presented with an extended menu (A, S),
the DM initially considers a random subset of alternatives in A∪S, which we refer to
as her initial consideration set. Following Manzini and Mariotti (2014) (henceforth
MM14), we assume that the DM pays attention to each alternative in this set in a
random and independent manner. The DM then proceeds to associate relevant
alternatives in A ∪ S with alternatives in her initial consideration set, with the
mental association process being captured by a directed graph over the alternatives
that represents the DM’s associative network. Each link of the associative network
takes the form of an ordered pair of alternatives (x, y), indicating the consideration
of x can prompt the DM to consider y. The association process is terminated when

3



she cannot associate more alternatives in A ∪ S with her considered ones. This
results in the formation of a final consideration set B. The DM then selects her
most preferred alternative among the feasible ones in B, i.e., she chooses her most
preferred alternative in B ∩ A if it is not empty. Otherwise, the default option is
selected. We refer to the random choice rule induced by this choice procedure as
the random consideration and association rule (RCAR).

We present five axioms to characterize RCARs. Axiom 1 specifies the baseline
attention distribution of the DM, where she randomly and independently allocates
attention to each alternative. Axiom 2 imposes a monotonicity condition on the
random choice rule. The mental association process is captured by Axioms 3 and
4. Axiom 3 stipulates that the DM can associate more alternatives with a given
alternative when there are more perceivable ones that serve as cues, while Axiom 4
asserts that if the DM can associate y with x in the presence of z but fails to do so
when z is not perceivable, then she must associate z with x and y with z. Finally,
Axiom 5 states that the effect of one alternative on the choice frequency of another
alternative is asymmetric, as it depends on the DM’s preference ordering over the
two alternatives. Taken together, these axioms fully characterize our choice model.
We emphasize that all parameters of our model can be uniquely identified under
the new choice domain. In Section 5, we provide an additional characterization of
our model in situations where all perceivable alternatives are feasible.

The remainder of the Introduction discusses some related literature. We
introduce baseline notations and definitions in Section 2 and present our model
of association in Section 3. Section 4 characterizes our choice model, and Section
5 studies our model in a restricted choice domain. Section 6 contains several
extensions of our main model, and Section 7 concludes the paper. The Appendix
collects proofs omitted from the main body of the paper.
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1.1 Related Literature

Our paper contributes to the growing literature on choices with limited attention.1

In particular, our approach is closely related to that of MM14, as both models
assume that the DM allocates her attention randomly and independently. However,
our model differs from the model of MM14 in that our DM has a follow-up procedure
through which she continues to expand her consideration set via mental association.
When considering the domain where all perceivable alternatives are feasible, our
model generalizes that of MM14 and connects it with the rational choice model.
Specifically, when the DM does not engage in any mental association, our model
reduces to that of MM14. On the other hand, when each pair of alternatives are
associated with each other, our model converges to the rational choice model: the
DM always selects the best feasible alternative whenever she initially pays attention
to a non-empty set of perceivable option.

Our model makes three novel contributions to the literature on limited
attention. First, we examine the cognitive process of mental association, which is
a fundamental mechanism in forming the DM’s consideration set. We provide a
concrete procedure for how this process operates. Second, our model incorporates
both bottom-up attention (initial random attention) and top-down attention
(mental association), which have been shown to be influential factors in decision
making (Mogg, Bradley, Dixon, Fisher, Twelftree, and McWilliams, 2004; Geng
and Behrmann, 2005; Jackson, Stafford, and Smith, 2009).2 Third, we investigate
the impact of infeasible but perceivable alternatives on the DM’s attention. This
new framework enables us to obtain novel testable implications.

More broadly, our paper contributes to the literature on random choices, which
1See, for instance, Masatlioglu, Nakajima, and Ozbay (2012), Brady and Rehbeck (2016),

MM14, Dean, Kıbrıs, and Masatlioglu (2017), Lleras, Masatlioglu, Nakajima, and Ozbay (2017),
Cattaneo, Ma, Masatlioglu, and Suleymanov (2020), Dardanoni, Manzini, Mariotti, and Tyson
(2020), Cattaneo, Cheung, Ma, and Masatlioglu (2021), etc.

2Bottom-up attention involves the automatic processing of sensory stimuli in the environment,
such as sudden loud noises or bright lights, that capture an individual’s attention involuntarily.
By contrast, top-down attention refers to the deliberate allocation of attention that is guided by
an individual’s goals, expectations, and prior knowledge. In our model, the DM’s initial attention
is more likely to be bottom-up, as the DM is randomly attracted to the stimuli or salient features
of the options. However, the second-stage mental association is more likely to be top-down, as
individuals can direct their attention towards information or options that are relevant to their
self-concept (Sui, Gu, and Han, 2012).
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has sought to explain the occurrence of stochastic decision making in human
behavior. Various explanations have been proposed, including the possibility that
the DM has random utilities, leading to stochastic choices as a result of utility
maximization (Block and Marschak, 1960; Falmagne, 1978; Gul and Pesendorfer,
2006; Gul, Natenzon, and Pesendorfer, 2014)3, and the possibility that the DM
randomizes deliberately (Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella, 2019;
Agranov and Ortoleva, 2022). While the randomness in our DM’s choice behavior
is driven by random attention, our model highlights the potential for choices to be
influenced by options that are not included in the feasible choice set. Our work
emphasizes the importance of understanding mental associations as a potential
source of random choices in cases where the DM’s set of perceivable alternatives
cannot be fully observed.

Our work also relates to the literature on how choices are influenced by factors
beyond the choice menu. These factors can include frames (Salant and Rubinstein,
2008), the DM’s reference points or status quo (Masatlioglu and Ok, 2005, 2014;
Kovach and Suleymanov, 2021), and recommendations from external sources
(Cheung and Masatlioglu, 2021), among others. While our approach shares some
similarities with the work of Kovach and Suleymanov (2021), which examines how
reference points can shape the DM’s attention, our study focuses on the impact of
infeasible alternatives on the DM’s consideration set.

Another notable paper that has close connection to ours is Masatlioglu and
Nakajima (2013) (henceforth MN13). MN13 examine an agent who initially pays
attention to one alternative and then searches all alternatives connected to it. The
agent then focuses on the optimal alternative among those she has considered
and takes it as a new starting point to continue this process. The agent stops
and selects the alternative that she currently focuses on if no better alternative
is connected to it. MN13 interprets this choice procedure as either a physical
searching process or a mental association process. While our paper shares similar
motivation with that of MN13, the two models have different emphases: MN13
studies how the initial focal point affects the final choice of the DM through mental

3One of the most influential random utility models is the Luce’s model (Luce, 1959), which
is closely related to the widely adopted logit (Strom, 1965) and nested logit (McFadden, 1974)
models in structural estimations. See also Kovach and Tserenjigmid (2022) for the behavioral
foundations of these models.
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association or searching, while our paper explores the role of mental association in
shaping the DM’s choices when the feasible choice set may not fully capture the
DM’s attention.

Finally, our work is conceptually connected to the literature on social networks
and network games (Jackson, 2008; Galeotti, Goyal, Jackson, Vega-Redondo, and
Yariv, 2010; Goyal, 2023). In this literature, individuals are represented by the
nodes on the network, and their interactions with each other are captured by
the links. We adopt the concept of an associative network, where each node
represents an alternative, and the links characterize the DM’s mental association.
Our research suggests the potential of utilizing the methods and tools developed
in the network literature to investigate individual choices.

2 Preliminaries

We consider a nonempty and finite set X of alternatives, with generic alternatives
denoted by x, y, z, etc. Denote by M the collection of all subsets of X. Elements
of M are referred to as menus and are denoted by A, B, D, etc. When there is no
confusion, we write x for the singleton menu {x}, and omit the set union mark by
writing AB for A ∪ B and Ax for A ∪ x.

An extended menu is a pair (A, S) ∈ M × M with A ∩ S = ∅. We interpret
AS as the set of perceivable alternatives, whereby A contains the feasible ones,
and S includes the infeasible ones. The DM can pay attention to any alternatives
in AS but can only make a choice from A or choose the default option. We denote
by S the collection of all extended menus.

Random choice rule. A random choice rule is a map ρ : X × S → [0, 1]
such that for all (A, S) ∈ S, (1) |A| ≠ 0 implies ∑

x∈A ρ(x, A, S) ∈ (0, 1), and (2)
ρ(x, A, S) > 0 implies x ∈ A. We write ρ(x|A, S) for ρ(x, A, S) in the rest part of
the paper, and define

Φ(A, S) := 1 −
∑
x∈A

ρ(x|A, S).

To interpret, ρ(x|A, S) is the probability that the DM chooses alternative x in
extended menu (A, S), and Φ(A, S) is the probability that the DM chooses the
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default option (e.g., walking away from the shop, abstaining from voting).4

We note that condition (1) states that if A is not empty, then the DM chooses
alternatives in A with a probability strictly between 0 and 1. That is, the DM has
a positive probability to choose the default option. When there are no feasible
alternatives, i.e., the set A is empty, we have Φ(∅, S) = 1. For any extended
menu (A, S), we denote by c(A, S) the set of alternatives in A that are chosen
with positive probabilities, i.e., c(A, S) = {x ∈ A : ρ(x|A, S) > 0}. We refer to
alternatives in c(A, S) as alternatives chosen in (A, S).

Preference. A preference ordering ≻ is a total order defined on X. We use
max(A; ≻) to denote the ≻-maximal alternative in A whenever A is not empty.

3 Limited Attention with Associative Network

We model a DM who forms her consideration set through mental association. The
DM has a random initial consideration set and enlarges her consideration set by
associating other perceivable alternatives with her considered ones, resulting in an
enlarged consideration set that we refer to as her final consideration set. The DM
then chooses the best feasible alternative (according to her preference ordering) in
her final consideration set (and chooses the default option if each alternative in
her final consideration set is not feasible). Below, we formalize this procedure.

Initial consideration set. Following MM14, we assume that each alternative
has a fixed probability to be initially considered by the DM, and that the DM
attributes her attention to each alternative independently. The attention probability
of each alternative is given by an attention probability function π : X → (0, 1). For
a given π, we define π̊ : X → (0, 1) such that for all x ∈ X, π̊(x) = 1 − π(x). To
interpret, π̊(x) is the probability that the DM does not pay attention to x initially.
To simplify the notation, we write πx for π(x), π̊x for π̊(x), πA for ∏

x∈A π(x), and
π̊A for ∏

x∈A π̊(x).

In a given extended menu (A, S), the DM can only pay attention to alternatives
in AS. Thus, the DM’s initial consideration set is a subset of AS. In particular,

4For recent work on allowing “not choosing” in a random choice setting, see MM14, Brady
and Rehbeck (2016) and Dardanoni, Manzini, Mariotti, and Tyson (2020).
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the probability for a subset B of AS to be the DM’s initial consideration set is
given by

πBπ̊(AS)\B.

The above formula assumes that the probability of the DM paying attention to
each perceivable alternative remains constant regardless of whether it is feasible
or not. This assumption is appropriate in situations where the feasibility of
alternatives does not impact their ability to catch the DM’s attention. For example,
a consumer may randomly notice some products displayed in a store, whether or
not they are in stock, or a food enthusiast may randomly pay attention to menu
items at a restaurant, regardless of whether they are available. In Section 6, we
discuss the case where this assumption is relaxed.

Associative network and the final consideration set. After forming her
initial consideration set, the DM can expand it through mental association. This
is facilitated by an associative network, which is a directed graph (X, G), where
G ⊆ X × X is a binary relation that satisfies X ⊆ G, where X = {(x, x) : x ∈ X}.
If (x, y) ∈ G, then y is directly associated with x, which particularly means
in this paper that the attention to x will prompt the DM to further consider y.
In the remaining part of the paper, we omit X and call the binary relation G an
associative network.

The mental association process enables the DM to consider more alternatives
based on what she already considers. In a given extended menu (A, S), the DM’s
mental association process is only relevant with the restricted associative network
GAS on AS, where GAS = {(x, y) ∈ G : x, y ∈ AS}.

With GAS, the DM’s mental association process works as follows. For each
alternative x ∈ AS that she initially considers, she includes every alternative y

that satisfies (x, y) ∈ GAS into her consideration set. For each such alternative y,
she then expands her consideration set by including each alternative z that satisfies
(y, z) ∈ GAS. The association process terminates when the DM cannot associate
other alternatives in AS with what she already considers.

Formally, let ḠAS ⊆ X × X be the transitive closure of GAS. That is, ḠAS is
the smallest superset of GAS satisfying the property that for all (x, y), (y, z) ∈ ḠAS,
(x, z) ∈ ḠAS. In other words, (x, y) ∈ ḠAS if and only if there is a path from x to y
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in the restricted graph (AS, GAS). Here, a path refers to a sequence of alternatives
x1, ..., xn ∈ AS where x1 = x and xn = y, and for all k ∈ {1, ..., n−1}, (xk, xk+1) ∈
GAS. For a given extended menu (A, S), we say that y is associated with x in
(A, S) if (x, y) ∈ ḠAS.5 To interpret, if (x, y) ∈ ḠAS, then the consideration of x

leads to the consideration of y through an association path in GAS. Thus, whenever
the DM initially considers x ∈ AS, the set

ḠAS(x) := {y : (x, y) ∈ ḠAS}

is included in her final consideration set. When the initial consideration set of the
DM is B ⊆ AS, her final consideration set is given by

ḠAS(B) :=
⋃

x∈B

ḠAS(x).

We illustrate the mental association process described above in Figure 1.

x1 y1

x2 y2

x3 y3

z1 z2

Figure 1: The extended menu contains 8 alternatives. The associative network is
given by the arrows. The initial consideration set of the DM is {x1, y1}, and after
association, her final consideration set is {x1, x2, x3, y1, y2, y3}. Alternatives z1 and
z2 are not considered, as they are not associated with any considered alternative.

One implicit assumption we make is that the association process is only relevant
to whether an alternative is perceivable or not, and is independent of the feasibility
of the alternative. We justify this assumption by noting that in many applications,
the DM first forms her consideration set and then checks the availability of each
alternative. For example, in an offline store, the consumer may first consider

5When the extended menu (A, S) is clear, we simply say that y is associated with x.
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multiple items and then check their feasibility with the seller one by one. Similarly,
in an online retailing platform, the consumer may add all items she wants to compare
to her shopping cart, and those that are not feasible would be automatically labeled
by the platform system at the final checkout page.

Another important feature of our model is that the DM’s association process
depends on infeasible yet perceivable alternatives. To illustrate, consider two
extended menus ({z}, {x}) and (z, xy),6 and assume that y is directly associated
with x and z is directly associated with y, but z is not directly associated with x.
If the initial consideration set of the DM is x, then she cannot further consider z in
extended menu ({z}, {x}), but can do so through an intermediate alternative y in
extended menu (z, xy). This feature is relevant in many situations. For instance, a
DM can directly associate smoothies with milk and can be cued by the picture
of pineapple smoothies to further consider mango juice, but she cannot directly
associate mango juice with milk without the cue of pineapple smoothies.

We note that our model can also accommodate the case where the DM is
able to store the associated alternative y in her memory and use it for further
association. By doing so, she can directly associate z with x even in extended
menu ({z}, {x}). This seems to be incompatible with our model as an alternative
that is not perceivable serves as the intermediate alternative in the process of the
DM’s mental association. In fact, our model can accommodate such case: If the
DM can associate z with x through y without y being perceivable, then it is as if
the DM can directly associate z with x. The two interpretations lead to the same
choice behavior of the DM, and therefore, we do not distinguish between them in
our choice model.

Preference and choice. After forming the final consideration set, the DM
chooses the best alternative from the set if it contains at least one feasible alternative.
Otherwise, she chooses the default option. Specifically, in extended menu (A, S),
if the DM’s final consideration set is B ⊆ AS, then she chooses max(A ∩ B; ≻),
where ≻ is the DM’s preference.7 The definition of our choice rule is then given as
follows.

6We write ({z}, {x}) instead of (z, x) to denote the extended menu since the latter may also
denote a link in the associative network, which may create some confusion.

7Note that if A ∩ B = ∅, then max(A ∩ B; ≻) = ∅.
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Definition 1. A random choice rule ρ is a random consideration and association
rule (RCAR) if there exists a tuple (π, G, ≻), where π : X → (0, 1) is an attention
probability function, G is an associative network, and ≻ is a preference ordering,
such that for all x ∈ X and (A, S) ∈ S with x ∈ A:

ρ(x|A, S) =
∑

B⊆AS:x=max(ḠAS(B);≻)
πBπ̊(AS)\B.

In the above case, we say that (π, G, ≻) represents ρ as an RCAR.

In words, with an RCAR, the choice probability of x in extended menu (A, S)
is the frequency with which there exists some initial consideration set such that x

is the best alternative in the corresponding final consideration set.

4 Axioms and Representation Theorem

In this section, we first introduce a reformulation of our choice model, which
highlights some of its key properties. Then we present the axioms and representation
theorem, and discuss the comparative statics of our model.

4.1 Reformulation

An important feature of our model that distinguishes it from other random choice
models is that not every feasible alternative is chosen with a positive probability.
To see this, consider an RCAR ρ that is represented by (π, G, ≻) and an extended
menu (xy, ∅). Assume x ≻ y and (y, x) ∈ G, meaning that x is better than y, and
x is directly associated with y. In this extended menu, y can never be chosen, as
whenever y is considered, the DM will further consider x, which in turn blocks
the choice of y. The following proposition provides a characterization of the set of
chosen alternatives in a given extended menu.

Proposition 1. Consider an RCAR ρ that is represented by (π, G, ≻). For all
(A, S) ∈ S, x ∈ c(A, S) if and only if x = max(ḠAS(x) ∩ A; ≻).

According to Proposition 1, an alternative x is chosen in extended menu (A, S)
if and only if there is no association path from x to any feasible alternative that
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is strictly better than it. If some feasible alternative y that is better than x is
associated with x through some intermediate alternatives in AS, then the attention
to x always leads to the attention to y, and thus the choice of x is blocked by y.

To proceed, we investigate the choice frequency of each chosen alternative.
Consider an extended menu (A, S) and an alternative x ∈ c(A, S). We define

Γx,≻
G (A, S) := {y ∈ AS : x = max(ḠAS(y) ∩ A; ≻)}.

The consideration of alternatives in Γx,≻
G (A, S) lead to final consideration sets in

which x is ≻-best. Additionally, we define

HG(A, S) := {x ∈ AS : ḠA,S(x) ∩ A ̸= ∅},

which is the set of alternatives in extended menu (A, S) with which some feasible
alternative is associated. Clearly, we have A ⊆ HG(A, S). With these notations,
we reformulate our choice rule as follows.

Proposition 2. Consider an RCAR ρ represented by (π, G, ≻). For all (A, S) ∈ S,

HG(A, S) =
⋃

x∈c(A,S)
Γx,≻

G (A, S), (1)

Φ(A, S) = π̊HG(A,S), and (2)

if c(A, S) = {x1, ..., xn} with x1 ≻ ... ≻ xn, then

ρ(x1|A, S) = 1 − π̊B1 , and

∀k ∈ {2, ..., n}, ρ(xk|A, S) = (1 − π̊Bk
) π̊∪k−1

t=1 Bt
,

(3)

where for all k ∈ {1, ..., n}, Bk = Γxk,≻
G (A, S).

The interpretation of condition (1) is straightforward: Each alternative that
leads to the consideration of some alternative in A must lead to the choice of
some feasible alternative. Condition (2) is based on condition (1): The probability
for the default option to be chosen is equal to the probability that the initially
considered alternatives do not lead to the consideration of any feasible alternative.
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Condition (3) is a reformulation of our choice rule: The probability for an
alternative to be chosen is equal to the probability that it is finally considered
through the association process while all better feasible alternatives are not finally
considered.

4.2 Characterization

The first axiom stipulates the independent attention distribution for the DM.

Axiom 1—Default Independence: For all x ∈ X and A, B ∈ M with
x ∈ A ∩ B:

Φ(A, ∅)
Φ(A\x, ∅) = Φ(B, ∅)

Φ(B\x, ∅) .

Axiom 1 follows from the I-Independence axiom of MM14.8 When all perceivable
alternatives are feasible, the DM’s choice of the default option depends on whether
her initial consideration set is empty or not. The effect of removing a feasible
alternative on the frequency of choosing the default option is determined by the
extent to which it attracts the DM’s attention. Axiom 1 posits that the DM has
a constant probability of attending to a particular alternative, regardless of the
choice set.

Axiom 2—Feasibility Monotonicity: For all x, y ∈ X and (A, S) ∈ S
with y ∈ A and x /∈ AS, ρ(y|Ax, S) ≤ ρ(y|A, Sx), Φ(Ax, S) ≤ Φ(A, Sx), and in
particular, Φ(Ax, S) < Φ(A, Sx) implies Φ(A, Sx) = Φ(A, S).

Axiom 2 states that if a feasible alternative x becomes infeasible but remains
perceivable, the choice probabilities of other alternatives and the default option
weakly increase. In particular, if the probability of choosing the default option is
strictly increased after x becomes infeasible, then removing x from the extended
menu will have no additional effect on the choice frequency of the default option.

The first part of Axiom 2 can be interpreted as the standard monotonicity
condition of random choice rules. For the second part, consider an alternative x

such that the consideration of x leads to the consideration of some other feasible
8The I-Independence axiom requires more than Axiom 1 does. It additionally requires that

for all x, y ∈ X and A, B ∈ M with x, y ∈ A ∩ B and x ̸= y, ρ(x|A\y,∅)
ρ(x|A,∅) = ρ(x|B\y,∅)

ρ(x|B,∅) .
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alternative in A. In this case, the feasibility of x does not affect the choice frequency
of the default option: No matter whether x is feasible or not, it will lead to the
choice of some feasible alternative and block the choice of the default option. On
the other hand, if the consideration of x does not lead to the consideration of any
other feasible alternative in A, then x blocks the choice of the default option only
when it is feasible. Following this logic, when the feasibility of x has an impact
on the choice frequency of the default option (i.e., Φ(Ax, S) < Φ(A, Sx)), it can
be inferred that no other feasible alternative in A is associated with x. Therefore,
when x is infeasible but perceivable, removing x will not further alter the choice
frequency of the default option.

To state the next two axioms, we need some additional notations. For any x ∈ X

and (A, S) ∈ S, we say that some alternative in A is revealed to be associated
with x through S, denoted by x

S−→ A, if either Φ(A, S) ̸= Φ(A, S\x) or x ∈ A. If
x ∈ A, then the alternative x in A is associated with x. If Φ(A, S) ̸= Φ(A, S\x),
by our previous analysis, there must be some alternative in A that is associated
with x, since otherwise, removing x from the extended menu will not change the
choice frequency of the default option.

Axiom 3—Expansion: For all x ∈ X and (A, S), (B, T ) ∈ S, if B ⊆ A and
BT ⊆ AS, then x

T−→ B implies x
S−→ A.

Axiom 3 states that if a DM can associate some feasible alternative with x in a
given extended menu, she can also do so in a less restrictive extended menu. In
other words, when there are more intermediate cues in the form of perceivable
alternatives, more alternatives become associated with x.

Axiom 4—Path Connectedness: For all x, y ∈ X and (A, S) ∈ S with
x ̸= y, if x

S−→ A and not x
S\y−−→ A\y, then x

S\y−−→ y and y
S\x−−→ A.

Axiom 4 captures the key feature of the associative network: One alternative
is associated with another through paths in the network. To see this, note that
if the DM can associate some alternative in A with x through S but cannot do
so when y is not perceivable, then y must be an intermediate alternative for this
association process. Hence, the DM must associate y with x and associate some
alternative in A with y.
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Axiom 5—Association Asymmetry: For all x, y ∈ X and (A, S), (B, T ) ∈ S
with x ̸= y, x ∈ c(A, S) and y ∈ c(B, T ):

ρ(y|A, S) ̸= ρ(y|A\x, S) ⇒ ρ(x|B, T ) = ρ(x|B\y, Ty) = ρ(x|B\y, T ).

Axiom 5 is similar to the I-Asymmetry axiom of MM14.9 It says that if deleting
a chosen alternative x in a given extended menu changes the choice frequency of
another alternative y, then in a extended menu where y is chosen, neither the
feasibility nor the perceivability of y affects the choice frequency of x.

To interpret Axiom 5, consider two alternatives x and y. If deleting x from an
extended menu changes the choice frequency of y, then either the consideration of
x leads to the consideration of y and the presence of x increases the likelihood of
y, meaning that x cannot be better than y, or the presence of x hinders the choice
of y, indicating that x is better than y. Moreover, if x is chosen in the extended
menu, then the former case cannot happen and x must be better than y. Therefore,
deleting y from an extended menu in which it is chosen does not alter the choice
frequency of x, otherwise the same argument would imply that y is better than
x, leading to a contradiction. Together, these five axioms fully characterize our
random choice rule.

Theorem 1. Axioms 1-5 are sufficient and necessary for a random choice rule ρ

to be an RCAR. If ρ can be represented by both (π1, G1, ≻1) and (π2, G2, ≻2) as an
RCAR, then π1 = π2, G1 = G2, and ≻1=≻2.

Identification of the parameters. The attention probability πx of a given
alternative x can be identified by examining its choice frequency in extended menu
(x, ∅). Specifically, we have πx = ρ(x|x, ∅), i.e., x is chosen in (x, ∅) when it attracts
the attention of the DM.

The preference ordering ≻ can be identified through extended menus taking
the form of (xy, ∅). Without loss of generality, suppose that x is better than y.
There are two cases to be considered: Either x is associated with y and blocks the
choice of y, or x is not associated with y and thus y is chosen with probability

9The I-Asymmetry axiom states that for all distinct x, y ∈ X and A, B ∈ M, if ρ(y|A, ∅) ̸=
ρ(y|A\x, ∅), then ρ(x|B, ∅) = ρ(x|B\y, ∅).
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π̊xπy. In both cases, deleting x from extended menu (xy, ∅) strictly boosts the
choice frequency of y to πy. On the other hand, one can verify that deleting y will
not boost the choice frequency of x. Therefore, the preference ranking x ≻ y is
identified.

The associative network G can be identified through extended menus taking
the form of ({x}, {y}). If ρ(x|x, y) ̸= ρ(x|x, ∅), i.e., removing an infeasible but
perceivable option y changes the choice frequency of x, then x is identified to be
associated with y. By our construction, the attention probability function π, the
preference ordering ≻, and the associative network G are all unique.

Sketch of the sufficiency part of the proof of Theorem 1. With the
identified parameters (π, G, ≻), we briefly discuss how our axioms lead to the
representation of RCARs. In step 1, we show that the binary relation ≻ is
well-defined for each distinct pair of alternatives and satisfies asymmetry and
transitivity.10 Thus, ≻ is indeed a preference ordering. In addition, we show that
if x ≻ y, then in any extended menu where y is chosen with a positive probability,
deleting y from the extended menu will not affect the choice frequency of x. This
observation follows from the Association Asymmetry axiom.

In step 2, we show that for all extended menu (A, S) and alternative x ∈ S,
Φ(A, S) ̸= Φ(A, S\x) if and only if some alternative in A is associated with x,
i.e., ḠAS(x) ∩ A ̸= ∅. With this observation, we can focus on a subset Ŝ ⊆ S in
extended menu (A, S) such that Ŝ contains all the alternatives with which some
alternative in A is associated. By the Feasibility Monotonicity axiom, we can show
that Φ(A, S) = Φ(A, Ŝ) = Φ(AŜ, ∅).

In step 3, we show that for all extended menu (A, S), an alternative x ∈ A is
chosen with positive probability if and only if there is no better feasible alternative
in (A, S) that is associated with x.

The final step is to show that each alternative is chosen with the probability
specified by our model. To illustrate, we provide a simple example. Consider an

10The binary relation ≻ is asymmetric if for all x, y ∈ X, x ≻ y implies not y ≻ x, and is
transitive if for all x, y, z ∈ X, x ≻ y and y ≻ z imply x ≻ z.
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extended menu (xyzw, r) such that

x ≻ y ≻ z ≻ w ≻ r,

Gxyzwr = X ∪ {(w, y), (r, z)}.

By step 3, w is not chosen in (xyzw, r) as its consideration leads to the consideration
of a better alternative y, and x, y, and z are chosen with positive probabilities.
Thus we need to show

ρ(x|xyzw, r) = πx, ρ(y|xyzw, r) = π̊x(1 − π̊yw),

ρ(z|xyzw, r) = π̊xyw(1 − π̊zr).
(4)

The key insight of our proof is that once we obtain the following probabilities

ρ(x|xyzw, r) + ρ(y|xyzw, r) + ρ(z|xyzw, r),

ρ(x|xyzw, r) + ρ(y|xyzw, r),

ρ(x|xyzw, r),

we can then derive the choice probabilities of x, y and z in (xyzw, r). To obtain
these probabilities, note that by step 2, we have Φ(xyzw, r) = Φ(xyzwr, ∅), since
z is associated with r. Hence,

1 − π̊xyzwr = 1 − Φ(xyzwr, ∅) = 1 − Φ(xyzw, r)

= ρ(x|xyzw, r) + ρ(y|xyzw, r) + ρ(z|xyzw, r).
(5)

To proceed, we delete z from the extended menu. By step 1, we have ρ(x|xyzw, r) =
ρ(x|xyw, r) and ρ(y|xyzw, r) = ρ(x|xyw, r), since z is chosen with positive
probability in (xyzw, r) and is worse than x and y. Again by step 3, we know
that in the new extended menu (xyw, r), only x and y are chosen with positive
probabilities (w is not chosen since y is associated with w). Since no alternative in
xyw is associated with r, by step 2, deleting r will not affect the choice frequency
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of the default option, i.e., Φ(xyw, r) = Φ(xyw, ∅). Hence,

1 − π̊xyw = 1 − Φ(xyw, ∅) = 1 − Φ(xyw, r)

= ρ(x|xyw, r) + ρ(y|xyw, r)

= ρ(x|xyzw, r) + ρ(y|xyzw, r).

(6)

Next, we delete y from the extended menu. By step 1, we have ρ(x|xyzw, r) =
ρ(x|xyw, r) = ρ(x|xw, r). Note that now w is also chosen with a positive probability
in (xw, r) since x is not associated with it. Therefore, we can continue to delete
w from the extended menu while maintaining the choice probability of x, i.e.,
ρ(x|xw, r) = ρ(x|x, r). By a similar argument, we have

1 − π̊x = 1 − Φ(x, ∅) = 1 − Φ(x, r) = ρ(x|x, r) = ρ(x|xyzw, r). (7)

Combining equations (5), (6), and (7), we obtain equation (4), and the desired
choice probabilities are obtained.

Comparative Statics. We end this section by discussing some comparative
statics of our model. We show that we can directly compare two DMs’ associative
networks without imposing any restriction on the alignment of their preferences
or attention probabilities. The following proposition directly follows from the
construction of G, and its proof is omitted.

Proposition 3. For any two RCARs ρ1 and ρ2 that are represented respectively by
(π1, G1, ≻1) and (π2, G2, ≻2), with Φ1(·, ·) and Φ2(·, ·) denoting the default option’s
choice probabilities under the two rules respectively, the following statements are
equivalent:

(1) For all x ∈ X and (A, S) ∈ S with x /∈ AS, if Φ1(A, S) ̸= Φ1(A, Sx), then
Φ2(A, S) ̸= Φ2(A, Sx).

(2) The associative network G1 is a subset of G2.

Condition (1) of Proposition 3 states that if DM1 associates some alternative
in A with x through S, then DM2 also does so. Clearly, this happens only when
DM2 conducts more mental association when making decisions, i.e., G1 ⊆ G2.
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5 All perceivable Alternatives Are Feasible

In many applications, every perceivable alternative is feasible. For instance, in an
offline book store, each book on the shelf is for sale, and in a grocery store, every
item on the shelves is available for purchase. In these situations, each extended
menu takes the form of (A, ∅) for some A ∈ M, and this is also the standard choice
setting adopted in most choice-theoretical frameworks. In this section, we provide
axioms that characterize RCARs when the DM’s choices are restricted on this
smaller domain.

We consider a proper subset F ⊆ S of extended menus where F = {(A, ∅) : A ∈
M}. In each extended menu in F , every perceivable alternative is feasible. The
choice data take the form of a random choice rule ρ restricted on F . We call such
a choice rule a restricted random choice rule. The first two axioms characterize
alternatives that are chosen with positive probabilities.

Axiom 6—Sen’s α: For all A, B ∈ M, B ⊆ A implies c(A, ∅) ∩ B ⊆ c(B, ∅).
Axiom 7—Reducibility: For all A ∈ M, if for all x ∈ A, c(A, ∅) ̸= c(A\x, ∅),

then c(A, ∅) = A.

Axiom 6 states that if an alternative is selected from a larger menu, it must also
be selected from any smaller menu that contains it. This axiom can be interpreted
to mean that if a particular alternative, denoted as x, is not chosen in a smaller
menu, then given the presence of more competitive alternatives in a larger menu,
it should also remain unselected. In our context, if an alternative is not chosen, its
consideration must lead to the consideration of a better alternative. Consequently,
in a larger menu, the superior alternative remains to be associated with x and thus
blocks the choice of x.

The contrapositive of Axiom 7 states that if not all alternatives are selected,
then there exists an unselected alternative whose removal does not alter the set of
chosen alternatives. To illustrate the axiom, consider an extended menu (xyz, ∅)
where only x is chosen. As both y and z are unselected, their consideration must
lead to the consideration of a superior alternative in this extended menu, which
has to be x. If the removal of y results in a change in the set of chosen alternatives
such that z becomes chosen, then x must be associated with z through y, and x
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must be directly associated with y. In this scenario, the deletion of z does not
alter the association relation between x and y, and thus does not affect the set of
chosen alternatives. In summary, Axiom 7 establishes the existence of an unselected
alternative (if not all alternatives are chosen) whose removal does not impact the
association relation among the remaining alternatives, thereby preserving the set
of chosen alternatives.

We note that both Axioms 6 and 7 are weakening of the Weak Axiom of
Revealed Preference (WARP).11 This axiom characterizes the rational choice model
for which there is a complete and transitive binary relation ≿∗ over X such
that for each (A, ∅) ∈ F , c(A, ∅) contains all alternatives in A that maximize
≿∗.12 It can be shown that WARP implies the Sen’s α axiom and a stronger
version of the Reducibility axiom which states that for all A ∈ M, if x /∈ c(A, ∅),
then c(A\x, ∅) = c(A, ∅). In fact, for any complete and binary relation ≿∗,
we can find an RACR ρ such that its support c satisfies that for all A ∈ M,
c(A, ∅) = max(A;≿∗).13 Thus, our random choice rule generalizes the rational
choice model in terms of the support of choices.

For an alternative x ∈ X and a menu A, we say that x is independent with A,
denoted by x ⊢ A, if x /∈ A and for all y ∈ A, ρ(y|A, ∅) = ρ(y|Ax, ∅). Note that
according to this definition, for all x ∈ X, we have x ⊢ ∅.

Axiom 8—Weak I-Independence: For all x ∈ X and A, B ∈ M, if x ⊢ A

and x ⊢ B, then x ⊢ A ∪ B.

Axiom 8 posits that if x is independent with both A and B, then it is also
independent with their union. It is noteworthy that this axiom is a less stringent
version of the I-Independence axiom of MM14. According to the I-Independence
axiom, if x does not affect the frequency of selecting alternative y in a particular
menu, then it should not impact the frequency of choosing y in any menu. In

11WARP states that for all x, y ∈ X and A, B ∈ M with x, y ∈ A ∩ B, if x ∈ c(A, ∅) and
y ∈ c(B, ∅), then x ∈ c(B, ∅).

12A binary relation ≿∗ is complete if for all x, y ∈ X, either x ≿∗ y or y ≿∗ x.
13To see this, consider a complete and transitive binary relation ≿∗. We construct the RCAR

as follows. Let ρ be represented by (π, G, ≻), where π is arbitrary, ≻ extends the asymmetric
part ≻∗ of ≿∗, and (x, y) ∈ G if and only if x = y or y ≻∗ x. One can verify the choice support c
of this RCAR coincides with the ≿∗-maximal alternatives in each extended menu in F .
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contrast, Axiom 8 necessitates that x has no impact on the choice frequency of
every alternative in the given menu.

For any two alternatives x and y, we say that x weakly dominates y, denoted
by x ⊵ y, if there is a menu A such that y ∈ A and c(A, ∅) = x.

Axiom 9—Dominance Asymmetry: For all x, y, z ∈ X and A, B ∈ M
with x ̸= z, x ⊵ y, y ∈ c(A, ∅), and z ∈ c(B, ∅):

ρ(z|A, ∅) ̸= ρ(z|A\y, ∅) ⇒ ρ(x|B, ∅) = ρ(x|B\z, ∅).

Axiom 9 can be interpreted similarly as Axiom 5. Based on our discussion of
Axiom 5, Axiom 9 states that if the choice of z is hindered by a chosen alternative
y that is weakly dominated by x, then z cannot hinder the choice of x provided
with that z is chosen with a non-trivial probability. The new axioms characterize
RCARs in the restricted choice domain.

Theorem 2. Axioms 1 and 6-9 are sufficient and necessary for a restricted random
choice rule ρ to be an RCAR restricted on F . If ρ is represented by both (π1, G1, ≻1)
and (π2, G2, ≻2) as an RCAR on F , then π1 = π2 and ≻1=≻2.

Identification of the associative network. Recall that in Section 4.2,
how we identify the DM’s preference ordering and attention probability function
relies only on extended menus of the form (A, ∅). Hence, even in the restricted
choice domain, we can still uniquely identify the DM’s preference ordering ≻ and
attention probability function π. What differs in the restricted choice domain is
the identification of the DM’s associative network. In what follows, we provide two
identification strategies.

Example 1. Consider two distinct alternatives x and y, and assume c(xy, ∅) = y.
We claim that any tuple (π, G, ≻) that represents ρ as an RCAC on F necessarily
satisfies (x, y) ∈ G: Since x is not chosen in xy, the consideration of x must prompt
the consideration of some better alternative, which has to be y.

The argument in Example 1 leads to a primitive association relation identified
through binary choices. The following example generalizes this observation.

Example 2. Consider four alternatives x, y, z, and w, and assume that
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(1) c(xy, ∅) = c(xyzw, ∅) = x, and

(2) c(xyw, ∅) = xw.

The observation c(xyzw, ∅) = x implies that x is better than the other three
alternatives. By c({xy, ∅}) = x and c(xyw, ∅) = xw, one can infer that x is
associated with y, and neither y nor x is associated with w, since otherwise the
attention to w would prompt the consideration of x and thus blocks the choice of
w. Now, by adding z to menu (xyw, ∅), w becomes unchosen. Hence, z must be
associated with w, i.e., for any tuple (π, G, ≻) that represents ρ as an RCAC on F ,
it necessarily satisfies that (w, z) ∈ G.

The above examples suggest the following identification of the associative
network. For a given restricted choice rule ρ, define

Gc := X ∪ {(x, y) ∈ X2\X : c(xy, ∅) = y} ∪

{(x, y) ∈ X2 : ∃A ⊆ X and z ̸= x with c(A, ∅) = c(Axy, ∅) = z, and c(Ax, ∅) = xz}.

Note that the definition of Gc only relies on the support c of the choice rule ρ.

An alternative way of identifying the associative network relies on the choice
frequencies of the alternatives. For a given restricted choice rule ρ, define

Gρ := X ∪ {(x, y) ∈ X2 : ∃A ∈ M such that x ⊢ A and x /∈ c(Axy, ∅)}.

In Lemma 8, we demonstrate that if the restricted choice rule ρ is a RCAR on F ,
then x ⊢ A implies that x is chosen in (Ax, ∅). Thus, according to the definition of
Gρ, if x ≠ y, then (x, y) ∈ Gρ if there is a menu A such that x is independent with
A, and adding y to Ax results in a change from selecting x to not selecting it. The
definition of Gρ is based on a similar idea as that of Gc: Since x is independent with
A, either (1) A is empty or (2) x is inferior to all selected alternatives in A and no
alternative in A is associated with x. When y is added to the menu, x becomes
unselected, and this can only be attributed to the fact that the consideration of
x prompts the consideration of a superior alternative through the intermediate
alternative y.

Our next proposition states that Gρ and Gc are the same if ρ is an RCAR on
F , and that both of them are the minimal associative network that represents the
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choice rule as an RCAR on F .

Proposition 4. For any random choice rule ρ restricted on F that is an RCAR
on F , the following statements are true.

(1) The two associative networks Gρ and Gc are identical.

(2) If ρ is represented by (π, G, ≻) as an RCAR on F , then Gc ⊆ G, and the
choice rule is also represented by (π, Gc, ≻) as an RCAR on F .

To end this section, we show that there could be multiple associative networks
representing the same restricted random choice rule as an RCAR on F .

Example 3. Consider X = {x, y} and a restricted choice rule ρ such that
ρ(x|x, ∅) = 1

2 , ρ(y|y, ∅) = 1
2 , ρ(x|xy, ∅) = 0, and ρ(y|xy, ∅) = 3

4 . Clearly, it
can be revealed that y is directly associated with x, and that y is better than x.
However, whether x is directly associated with y does affect the choice frequencies of
the alternatives as the presence of y always blocks the choice of x. That is, the DM’s
associative network can be either G1 = X ∪ (x, y) or G2 = X ∪ (x, y) ∪ (y, x).

6 Extensions

The focus of this section is to explore extensions of our model.

Feasibility and the attention probability. Our model assumes that the
attention probability of a perceivable alternative remains fixed, regardless of its
feasibility. However, this assumption may not hold in certain contexts. For example,
in some online shopping platforms, products that are sold out are explicitly labeled
as “out of stock” on the display page. It is conceivable that such labeling may
result in excessive attention from the consumer. Conversely, it is also plausible that
the consumer may pay less attention to these alternatives since they are known
to be unavailable. Therefore, a natural extension of our model is to incorporate
the feasibility of alternatives as a factor that influences the attention probability
assigned to them.

Formally, let πf : X → (0, 1) be the attention probability function for feasible
alternatives, and πn : X → (0, 1) be the attention probability function for infeasible
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but perceivable alternatives.14 Let G be the associative network and ≻ be the
DM’s preference ordering. For each extended menu (A, S) with A ≠ ∅, the choice
frequency of x ∈ A is given by

ρ(x|A, S) =
∑

B⊆AS: x=max(ḠAS(B),≻)
πf

B∩Aπn
B∩Sπ̊f

A\Bπ̊n
S\B.

We argue that all relevant parameters of the general model above can be
uniquely identified. First, the preference relation ≻ and associative network G
can be similarly identified as our main model. Second, the attention probability
for feasible alternatives πf can be identified through the choice frequency of each
singleton menu, i.e., for every x ∈ X, πf

x = ρ(x|x, ∅). Finally, the attention
probability for infeasible but perceivable alternatives πn can be identified through
the extent to which they boost the choice frequencies of other alternatives. To
see this, consider alternative x and assume that there exists a distinct alternative
y such that (x, y) ∈ G. Clearly, we have ρ(y|y, x) = 1 − (1 − πn

x)(1 − πf
y ), which

implies
πn

x = 1 − 1 − ρ(y|y, x)
1 − πf

y

.

We note that πn cannot be fully identified: For a given alternative x, if every other
alternative is not associated with it, then we are unable to identify πn

x . Nevertheless,
in such case, since the consideration of x does not prompt the consideration of any
other alternative, the value of πn

x does not affect the DM’s choice frequencies.

Random associative network. Another natural extension of our model is
to consider random networks (Galeotti and Rogers, 2015). Formally, let G be the
set of all possible associative networks over X. A random associative network is a
probability distribution µ over G . For a given preference ordering ≻ and attention
probability function π, the DM’s choice frequency of x in extended menu (A, S)
under the random associative network is given by

∑
G∈G

µ(G)
 ∑

B⊆AS:x=max(ḠAS(B);≻)
πBπ̊(AS)\B

 .

To interpret, the DM’s associative network is formed at the ex ante stage according
14The definitions of πf

A, πn
A, π̊f

A and π̊n
A are similar to those of πA and π̊A in Section 3.
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to the distribution µ. Then the DM conducts mental association following the
formed associative network when making decisions.

A random associative network µ is said to be a link-independent associative
network if there is a function θ : X2 → [0, 1] such that:

(1) for all x ∈ X, θ(x, x) = 1,
(2) for all G ∈ G , µ(G) =

(∏
(x,y)∈G θ(x, y)

) (∏
(x,y)∈X2\G(1 − θ(x, y))

)
.

To interpret, θ(x, y) is the probability that the DM can associate y with x, and
condition (2) indicates that the DM forms each association link independently. In
particular, when the network is undirected and the value of θ(x, y) is the same for
all pairs of x and y, the link-independent associative network coincides with the
well-known Erdős-Rényi random graph.15

For a link-independent associative network, the preference ordering ≻ and the
attention probability function π can be identified similarly as our baseline model.
The function θ can also be uniquely identified. To see this, consider two distinction
alternatives x and y. We have

ρ(y|y, x) = 1 − (1 − πy)(1 − πxθ(x, y)),

i.e., the probability for y being unselected in extended menu (y, x) is equal to the
probability that y is not initially attended to and not considered through the initial
consideration of x. Thus, the probability for y being associated with x is given by

θ(x, y) = 1
πx

− 1 − ρ(y|y, x)
πx − πxπy

.

However, for a general random associative network µ, the identification may
not be unique. We demonstrate this through the following simple example.

Example 4. Let X = {x, y} be the space of alternatives. Consider the following
random choice rule ρ.

ρ(y|xy, ∅) = 1
8 , ρ(x|xy, ∅) = ρ(x|x, y) = ρ(y|y, x) = 5

8 , ρ(x|x, ∅) = ρ(y|y, ∅) = 1
2 .

Based on the choice rule, it can be revealed that DM’s preference is x ≻ y, and
her attention probability function is given by πx = πy = 1

2 . However, the choice
15See Jackson (2008) and Goyal (2023) for a more detailed discussion of random networks.
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rule can be represented by more than one random associative networks: Any
random associative network µ can represent the choice rule if the probability of
y being associated with x and that of x being associated with y are both equal
to 1

2 under µ. Thus, we can consider four (deterministic) associative networks
G0 = X , G1 = X ∪ {(x, y)}, G2 = X ∪ {(y, x)}, and G3 = X ∪ {(x, y), (y, x)}, and
the two random associative networks µ1 and µ2, with µ1(G0) = µ1(G3) = 1

2 and
µ2(G1) = µ2(G2) = 1

2 , can both represent ρ.

7 Conclusion

In this paper, we present a novel choice model of mental association, which
underscores the significance of understanding mental associations as a cognitive
procedure for consideration set formation. Our study has several potential
applications in various fields. One such application is in the design of marketing and
advertising strategies. By understanding consumers’ mental associations, firms can
tailor their marketing messages to shape consumers’ perceptions of their products
or services. For example, firms can create positive mental associations between
their brand and other popular products in the market, thereby increasing the
likelihood of their product being considered by the consumer.

Another potential application of our model is in the analysis of consumer
behavior. Our model suggests that the DM’s choice frequencies can be influenced
by options that are not included in the feasible choice set. This has important
implications for understanding how consumers make decisions in markets where
there are many similar products or services, but not all of them are always
available. By considering mental association procedures, researchers can develop
more accurate models of consumer behavior. Similarly, our model can also be
adopted by policymakers to design more effective public policies. For instance,
policymakers need to be aware of negative associations of their policies, which may
cue individuals to be aware of socially worse choices.

Overall, our study provides new insights into the role of mental associations in
decision making and has important implications for a wide range of fields, including
marketing, consumer behavior, and public policy. The potential applications of our
model are vast, and we hope that our study inspires more research in this area.
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8 Appendix

Proof of Proposition 1. If x ∈ c(A, S), then there exists B ⊆ AS such that x =
max(ḠAS(B) ∩ A; ≻). Since x ∈ ḠAS(B), we have ḠAS(x) ⊆ ḠAS(B), and thus
x = max(ḠAS(x) ∩ A; ≻). Inversely, if x = max(ḠAS(x) ∩ A; ≻), then x is chosen
when the initial consideration set is x. Thus x ∈ c(A, S).

Proof of Proposition 2. To see condition (1), consider an extended menu (A, S).
The right-hand-side set is a subset of the left-hand-side set. To show the inverse
direction, consider x ∈ AS such that ḠAS(x) ∩ A ≠ ∅. Let y = max(ḠAS(x) ∩ A; ≻).
Since y ∈ ḠAS(x), we have ḠAS(y) ⊆ ḠAS(x). Thus y = max(ḠAS(y) ∩ A; ≻) and
x ∈ Γy,≻

G (A, S). By Proposition 1, y ∈ c(A, S), and condition (1) holds.

For equation (2), note that for all initial consideration set B ⊆ AS, we have
ḠAS(B) ∩ A ̸= ∅ if and only if there exists x ∈ B such that ḠAS(x) ∩ A ̸= ∅.
Thus the default option is chosen if and only if any alternative x that satisfies
ḠAS(x) ∩ A ̸= ∅ is not initially considered. This leads to equation (2).

For equation (3), without loss of generality, we show that the equation holds
for each k ∈ {2, ..., n}. When the initial consideration set is B, xk is chosen if and
only if ḠAS(B) ∩ {x1, ..., xk−1} = ∅ and xk ∈ ḠAS(B). That is, B ∩ Γxk,≻

G (A, S) ̸= ∅
and for all m ≤ k − 1, B ∩ Γxm,≻

G (A, S) = ∅. This leads to equation (3).

Proof of Theorem 1. (Necessity) Consider a choice rule ρ that is represented by
(π, G, ≻) as an RCAR. We show that Axioms 1-5 hold for ρ. For Axiom 1, note that
by Proposition 2, for all A ∈ M, Φ(A, ∅) = π̊A. Thus for all x ∈ A, Φ(A,∅)

Φ(A\x,∅) = π̊x,
which is independent with the menu A.

For the first half of Axiom 2, consider x ∈ X and (A, S) ∈ S with x /∈ AS.
By Proposition 2, we have Φ(Ax, S) = π̊HG(Ax,S) and Φ(A, Sx) = π̊HG(A,Sx). Since
HG(A, Sx) ⊆ HG(Ax, S), we have Φ(Ax, S) ≤ Φ(A, Sx). For every y ∈ A, let
By = Γy,≻

G (Ax, S), Dy = ∪z∈Ax:z≻yBz, B̂y = Γy,≻
G (A, Sx), and D̂y = ∪z∈A:z≻yB̂z.

For every y ∈ A, we have ρ(y|Ax, S) = π̊Dy(1− π̊By) and ρ(y|A, Sx) = π̊D̂y
(1− π̊B̂y

).
Note that if y ≻ x, then By = B̂y. Thus for every y ∈ A with y ≻ x, we have
Dy = D̂y. If x ≻ y, then By ⊆ B̂y, and since Dy = HG(Ax, S)\ (∪z∈A:y≻z or z=yBy)
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and D̂y = HG(A, Sx)\
(
∪z∈A:y≻z or z=yB̂y

)
, we have D̂y ⊆ Dy. It follows that for

all y ∈ A, ρ(y|Ax, S) ≤ ρ(y|A, Sx).

For the second half of Axiom 2, note that Φ(Ax, S) < Φ(A, Sx) implies
HG(A, Sx) ⊊ HG(Ax, S). Thus there exists y ∈ ASx such that ḠASx(y) ∩ A = ∅
and ḠASx(y) ∩ Ax ≠ ∅, i.e., ḠASx(y) ∩ Ax = x. Since x ∈ ḠASx(y), we have
ḠASx(x) ⊆ ḠASx(y), and thus ḠASx(x) ∩ A = ∅. Thus {y ∈ ASx : ḠASx(y) ∩ A ̸=
∅} = {y ∈ AS : ḠAS(y) ∩ A ̸= ∅}. By Proposition 2, we have Φ(A, Sx) = Φ(A, S).

For Axiom 3, consider two extended menus (A, S) and (B, T ) with B ⊆ A and
BT ⊆ AS. Since x

T−→ B, either (1) x ∈ B or (2) Φ(B, T ) ̸= Φ(B, T\x). Case (1)
directly implies x ∈ A and thus x

S−→ A. Case (2) implies ḠBT (x) ∩ B ̸= ∅, and thus
ḠAS(x) ∩ A ̸= ∅. We have either x ∈ A or Φ(A, S) ̸= Φ(A, S\x), both of which
imply x

S−→ A.

For Axiom 4, consider x, y ∈ X and (A, S) ∈ S such that x ̸= y, x
S−→ A, and

not x
S\y−−→ A\y. It follows that x ∈ S, ḠAS(x) ∩ A ̸= ∅, and Ḡ(AS)\y(x) ∩ A = ∅.

Since ḠAS(x) ∩ A ̸= ∅, there is a sequence (xk)n
k=1 of mutually distinct alternatives

in AS such that x1 = x, {x1, ..., xn} ∩ A = xn, and for all k ∈ {1, ..., n − 1},
(xk, xk+1) ∈ G. However, since Ḡ(AS)\y(x) ∩ A = ∅, for all such sequence, there
exists k ∈ {2, ..., n} such that xk = y. Therefore, we have x

S\y−−→ y and y
S\x−−→ A.

For Axiom 5, consider x ∈ c(A, S) and y ∈ c(B, T ) that satisfy the primitive
conditions of the axiom. We first show that x ≻ y. Since x ∈ c(A, S), for all z ∈ A

such that z ≻ x, Γz,≻
G (A, S) = Γz,≻

G (A\x, S). Therefore, by Proposition 2, for all
z ∈ A such that z ≻ x, ρ(z|A, S) = ρ(z|A\x, S). Since ρ(y|A, S) ̸= ρ(y|A\x, S),
we conclude that x ≻ y. Since x ≻ y and y ∈ c(B, T ), a similar argument implies
ρ(x|B, T ) = ρ(x|B\y, Ty) = ρ(x|B\y, T ).

(Sufficiency) Throughout the proof, we assume that Axioms 1-5 hold. We first
identify the attention probability function π. For each alternative x ∈ X, define
πx = ρ(x|x, ∅) ∈ (0, 1). By Axiom 1, for all A ∈ M, Φ(A, ∅) = π̊A. Next, define

G = X ∪ {(x, y) ∈ X2 : x ̸= y and ρ(y|y, ∅) ̸= ρ(y|y, x)}

as the associative network. Define the binary relation ≻ such that for any two
distinct alternatives x and y, x ≻ y if and only if ρ(y|y, ∅) > ρ(y|xy, ∅). Note that if
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x ≻ y, then x ∈ c(xy, ∅), since otherwise ρ(y|xy, ∅) = 1 − Φ(xy, ∅) > 1 − Φ(y, ∅) =
ρ(y|y, ∅), which contradicts to the definition of ≻. If x ≻ y, then by Axiom 5, we
have for all (A, S) ∈ S with y ∈ c(A, S), ρ(x|A, S) = ρ(x|A\y, Sy) = ρ(x|A\y, S).

Lemma 1. The binary relation ≻ is transitive and asymmetric, and satisfies that
for all x, y ∈ X with x ̸= y, either x ≻ y or y ≻ x.

Proof of Lemma 1. Consider two distinct alternatives x and y. We first show that
either x ≻ y or y ≻ x. To see this, note that ρ(x|xy, ∅) + ρ(y|xy, ∅) = 1 − π̊xy =
πx + πy − πxy < πx + πy = ρ(x|x, ∅) + ρ(y|y, ∅). Thus, either ρ(x|xy, ∅) < ρ(x|x, ∅)
or ρ(y|xy, ∅) < ρ(y|y, ∅), i.e., either x ≻ y or y ≻ x.

Next, we show that ≻ is asymmetric, i.e., if x ≻ y, then not y ≻ x. If x ≻ y,
then either ρ(y|xy, ∅) = 0, which implies ρ(x|xy, ∅) = πx+πy−πxy > πx = ρ(x|x, ∅),
or ρ(y|xy, ∅) > 0, which by Axiom 5 implies ρ(x|xy, ∅) = ρ(x|x, ∅). Thus y ̸≻ x.

Finally, we show that ≻ is transitive. Consider three mutually distinct
alternatives x, y and z with x ≻ y and y ≻ z. We show x ≻ z. Suppose to
the contrary that z ≻ x. We consider the following three representative cases and
show that all of them lead to contradictions.

Case 1: c(xyz, ∅) = xyz. By Axiom 5, we have ρ(x|xyz, ∅) = ρ(x|xz, ∅) > 0.
Since z ≻ x, by Axiom 5, we have ρ(z|xz, ∅) = ρ(z|z, ∅) = πz. Thus ρ(x|xyz, ∅) =
ρ(x|xz, ∅) = π̊zπx. Similarly, we have ρ(y|xyz, ∅) = π̊xπy and ρ(z|xyz, ∅) = π̊yπz.
This leads to a contradiction since

ρ(x|xyz, ∅) + ρ(y|xyz, ∅) + ρ(z|xyz, ∅) = πx + πy + πz − πxy − πxz − πyz

<πx + πy + πz − πxy − πxz − πyz + πxyz = 1 − π̊xyz = 1 − Φ(xyz, ∅).

Case 2: c(xyz, ∅) = xy. By Axiom 2, we have ρ(x|xyz, ∅) ≤ ρ(x|xy, z),
ρ(y|xyz, ∅) ≤ ρ(y|xy, z), and Φ(xyz, ∅) ≤ Φ(xy, z). Since ρ(z|xyz, ∅) = 0, we
have ρ(x|xyz, ∅) = ρ(x|xy, z), ρ(y|xyz, ∅) = ρ(y|xy, z), and Φ(xyz, ∅) = Φ(xy, z).
Since x ≻ y, y ∈ c(xyz, ∅) and y ∈ c(xy, z), by Axiom 5, we have ρ(x|x, yz) =
ρ(x|xy, z) = ρ(x|xyz, ∅) = ρ(x|xz, ∅). Since z ≻ x and x ∈ c(xz, ∅), we have
ρ(x|xz, ∅) = π̊zπx. Thus ρ(x|x, yz) = π̊zπx and Φ(x, yz) = 1− π̊zπx > π̊x. However,
note that by Axiom 2, either Φ(x, yz) = Φ(x), or Φ(x, yz) = Φ(xy), or Φ(x, zy) =
Φ(xz), or Φ(x, yz) = Φ(xyz), all of which contradict to Φ(x, yz) > π̊x.
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Case 3: c(xyz, ∅) = x. Since ρ(y|xyz, ∅) = 0, by Axiom 2, we have ρ(x|xz, y) =
ρ(x|xyz, ∅) > 0 and ρ(z|xz, y) = ρ(z|xyz, ∅) = 0. Since z ≻ x and x ∈ c(xz, y), by
Axiom 5, we have ρ(z|z, xy) = ρ(z|xz, y) = 0, which contradicts to the definition
of ρ that for all extended menu (A, S), ∑

x̂∈A ρ(x̂|A, S) > 0.

Lemma 2. For all x ∈ X and (A, S) ∈ S with x ∈ S, if Φ(A, S) ̸= Φ(A, S\x),
then ḠAS(x) ∩ A ̸= ∅.

Proof of Lemma 2. Consider x ∈ X and (A, S) ∈ S such that Φ(A, S) ̸=
Φ(A, S\x), i.e., x

S−→ A. Note that A ̸= ∅ since otherwise Φ(A, S) = Φ(A, S\x) = 1.
Also, note that x

S−→ ∅ is not true. Thus, by Axiom 4 and a simple induction, we
can find some y ∈ A such that x

S−→ y. It suffices to show y ∈ ḠSy(x), and we show
this by induction.

First, note that if |S| = 1, then S = x. Thus x
S−→ y implies Φ(y, x) ̸= Φ(y, ∅),

which further implies ρ(y|y, x) ̸= ρ(y|y, ∅), i.e., (x, y) ∈ G, and we are done. Next,
suppose that when |S| ≤ n, x

S−→ y implies y ∈ ḠSy(x). We show that when
|S| = n + 1, x

S−→ y also implies y ∈ ḠSy(x). To see this, note that if there
is z ∈ S\x such that x

S\z−−→ y, then by the induction hypothesis, y ∈ ḠSy(x).
Otherwise, for all z ∈ S\x, x

S\z−−→ y does not hold. By Axiom 4, we have for all
z ∈ S\x, x

S\z−−→ z and z
S\x−−→ y. By our induction hypothesis, for all z ∈ S\x,

y ∈ Ḡ(Sy)\x(z) and z ∈ ḠS(x). By the definition of Ḡ, we have y ∈ ḠSy(x).

Lemma 3. For all x ∈ X and (A, S) ∈ S with x ∈ S, if ḠAS(x) ∩ A ̸= ∅, then
Φ(A, S) ̸= Φ(A, S\x).

Proof of Lemma 3. Suppose x ∈ S and ḠAS(x) ∩ A ̸= ∅. Then we can find a
sequence (xk)n

k=1 such that x1 = x, xn ∈ A, and for all k ∈ {1, ..., n−1}, (xk, xk+1) ∈
G and xk ∈ S. We want to show Φ(xn, {x1, ..., xn−1}) ̸= Φ(xn, {x2, ..., xn−1}), then
by Axiom 3, we have Φ(A, S) ̸= Φ(A, S\x). For notation simplicity, we use Bk,m,
where n ≥ m ≥ k ≥ 1, to denote the set {xk, xk+1, ..., xm}.

First, we show Φ(xn, B1,n−1) = Φ(B1,n, ∅). To see this, note that (xn−1, xn) ∈ G
implies Φ(xn, xn−1) ̸= Φ(xn, ∅). By Axiom 3, Φ(xn, B1,n−1) ̸= Φ(xn, B1,n−2). By
Axiom 2, we have Φ(xn, B1,n−1) = Φ(xn−1xn, B1,n−2). Thus, a simple induction
establishes that Φ(xn, B1,n−1) = Φ(B1,n, ∅). By the same argument, we can
inductively show Φ(xn, B2,n−1) = Φ(B2,n, ∅). Since (x1, x2) ∈ G, by Axiom 3,
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we have Φ(B2,n, ∅) ̸= Φ(B2,n, x1). By Axiom 2, we have Φ(B2,n, x1) = Φ(B1,n, ∅).
Since Φ(B1,n, ∅) ̸= Φ(B2,n, ∅), we have Φ(xn, B1,n−1) ̸= Φ(xn, B2,n−1).

Lemma 4. For all (A, S) ∈ S, Φ(A, S) = π̊HG(A,S).

Proof of Lemma 4. By Lemma 3 and Axiom 2, we can shift all alternatives
in HG(A, S) to the feasible set without changing the choice probability of the
default option, i.e., Φ(A, S) = Φ(HG(A, S), S\HG(A, S)). For all x ∈ S\HG(A, S),
ḠAS(x) ∩ HG(A, S) = ∅. By Lemma 2, we have Φ(HG(A, S), S\HG(A, S)) =
Φ(HG(A, S), ∅). Thus Φ(A, S) = Φ(HG(A, S), ∅) = π̊HG(A,S).

Lemma 5. For all x ∈ X and (A, S) ∈ S with x /∈ AS, if Φ(Ax, S) = Φ(A, Sx),
then Φ(A, Sx) < Φ(A, S).

Proof of Lemma 5. For all x ∈ X and (A, S) ∈ S with x /∈ AS, we have
HG(A, S) ⊊ HG(Ax, S). By Lemma 4, Φ(Ax, S) < Φ(A, S). Hence, if Φ(Ax, S) =
Φ(A, Sx), then Φ(A, Sx) < Φ(A, S).

Lemma 6. For all x ∈ X and (A, S) ∈ S with x ∈ A, if there is y ∈ ḠAS(x) ∩ A

such that y ≻ x, then x /∈ c(A, S).

Proof of Lemma 6. Consider x, y, and (A, S) that satisfy the conditions stated in
the lemma. It suffices to show x /∈ c(xy, (AS)\(xy)), then by Axiom 2, we have
x /∈ c(A, S). Suppose to the contrary that x ∈ c(xy, (AS)\(xy)). Since y ≻ x, by
Axiom 5, we have ρ(y|xy, (AS)\(xy)) = ρ(y|y, (AS)\y). Thus Φ(xy, (AS)\(xy)) <

Φ(y, (AS)\y). By Axiom 2, we have Φ(y, (AS)\y) = Φ(y, (AS)\(xy)), which
contradicts to Lemma 3 as y ∈ ḠAS(x).

Lemma 7. For all x ∈ X and (A, S) ∈ S with x ∈ A, if x /∈ c(A, S), then there
is y ∈ ḠAS(x) ∩ A such that y ≻ x.

Proof of Lemma 7. Consider x and (A, S) that satisfy the conditions stated in the
lemma. We prove the lemma by induction. If x ∈ A and x /∈ c(A, S), then |A| ≥ 2.
When |A| = 2, there exists y ̸= x such that c(A, S) = y (note that A = xy in
this case). Since ρ(x|xy, S) ̸= ρ(x|x, S), by the property of the preference ≻ and
Axiom 5, we have y ≻ x. Since x /∈ c(xy, S), by Axiom 2, Φ(xy, S) = Φ(y, Sx). By
Lemma 5, we have Φ(y, Sx) ̸= Φ(y, S), i.e., y ∈ Ḡx

AS, and we are done.
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Suppose that the lemma holds when |A| ≤ n, where n ≥ 2. We show that it
also holds for |A| = n + 1. If there exists z ∈ A\x such that z /∈ c(A, S), then by
Axiom 2, we have x /∈ c(A\z, Sz). Since |A\z| = n, we are done. Consider the case
where x = A\c(A, S). If there exists z ∈ A\x such that x /∈ c(A\z, S), then again
we are done. Thus we consider the case where x = A\c(A, S) and for all y ∈ A\x,
x ∈ c(A\y, S). By the property of the preference ≻ and Axiom 5, we have for all
y ∈ A\x, y ≻ x. Since x /∈ c(A, S), by Axiom 2, we have Φ(A, S) = Φ(A\x, Sx).
By Lemma 5, we have Φ(A\x, Sx) ̸= Φ(A\x, S). By Lemma 2, ḠAS(x)∩(A\x) ̸= ∅,
i.e., there exists y ∈ A such that y ≻ x and y ∈ ḠAS(x).

Now, we verify that the choice probability of each alternative in a given extended
menu (A, S) coincides with the RCAR represented by (π, G, ≻). To avoid triviality,
assume A ̸= ∅. By Lemmas 6 and 7, an alternative in A is chosen with positive
probability if and only if there is no ≻-better alternative in A that is associated
with it. Without loss of generality, let {x1, ..., xn} be those alternatives in A that
are chosen with positive probabilities such that x1 ≻ x2 ≻ ... ≻ xn. Following
Proposition 2, we construct a partition {B1, ..., Bn+1} of AS such that for all
k ∈ {1, ..., n},

Bk = Γxk,≻
G (A, S), and

Bn+1 = (AS)\HG(A, S).

It suffices to show that for all k ∈ {1, ..., n}, ρ(xk|A, S) = π̊B1...Bk−1(1 − π̊Bk
). By

the construction, for all k ∈ {1, ..., n}, we have for all y ∈ (Bk ∩ A)\xk, xk ≻ y.

By Lemma 4, we have

n∑
k=1

ρ(xk|A, S) = 1 − Φ(A, S) = 1 − π̊B1...Bn . (8)

If n = 1, then we are done. Consider the case where n ≥ 2. What remains to be
shown is that for all m ∈ {1, ..., n − 1}, we have

m∑
k=1

ρ(xk|A, S) = 1 − π̊B1...Bm . (9)

To show this, first note the following observation: For all m ∈ {1, ..., n − 1}
and all D ⊆ AS such that ∪m

k=1Bk ⊆ D, if D ∩ A ∩ (∪n
k=m+1Bk) ̸= ∅, then
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c(D ∩ A, D ∩ S) ∩ (∪n
k=m+1Bk) ̸= ∅. This observation is true since otherwise for all

z ∈ D ∩A∩ (∪n
k=m+1Bk), ḠD(z)∩ (∪m

k=1Bk) ̸= ∅, indicating that z ∈ ∪m
k=1Bk, which

is a contradiction. Thus we can enumerate alternatives in A ∩
(
∪n

k=m+1Bk

)
as

A ∩
(
∪n

k=m+1Bk

)
= {z1, ..., zl} such that z1 ∈ c(A, S), and for all k ∈ {1, ..., l − 1},

zk+1 ∈ c(A\{z1, ..., zk}, S). By Axiom 5 and the construction of ≻, we have for all
k ∈ {1, ..., l} and k̂ ∈ {1, ..., m},

ρ(xk̂|A\{z1, ..., zk}, S) = ρ(xk̂|A, S).

Thus for all k ∈ {1, ..., m}, we have ρ(xk|A, S) = ρ(xk|A ∩ (∪m
l=1Bl) , S). One can

easily show that Φ(A∩(∪m
l=1Bl) , S) = π̊B1...Bm and c(A∩(∪m

l=1Bl) , S) = {x1, ..., xm}.
Therefore, equation (9) holds.

Proof of Theorem 2. (Necessity) By Proposition 1, Axiom 6 holds trivially. For
Axiom 7, consider A ∈ M such that c(A, ∅) ⊊ A. Without loss of generality, let
c(A, ∅) = {x1, ..., xn}. By Proposition 2, we can have a partition {Bk}n

k=1 of A

such that for all k ∈ {1, ..., n}, we have Bk = Γxk,≻
G (A, ∅). Let xt be the ≻-worst

alternative in c(A, ∅) satisfying Bt ̸= xt. For such xt, let D1 = xt, and for each k ≥ 2,
define inductively Dk = {x ∈ Bt : ∃y ∈ Dk−1 such that (x, y) ∈ G}. It is easy to
show that there is a minimal number k ≥ 2 such that Dk−1 ⊊ Dk = Dk+1 = Bt.
Pick an arbitrary z ∈ Dk\Dk−1. We have Γxt,≻

G (A\z, ∅) = Bt\z, and for all
k ∈ {1, ..., n}\t, Γxk,≻

G (A\z, ∅) = Γxk,≻
G (A, ∅). It follows that c(A, ∅) = c(A\z, ∅),

and Axiom 7 holds.

For Axiom 8, note that x ⊢ A if and only if for all y ∈ c(A, ∅), y ≻ x, and for
all z ∈ A, (x, z) /∈ G. It follows that x ⊢ A and x ⊢ B imply x ⊢ AB. Axiom 9 can
be shown by a similar proof to that for the necessity of Axiom 5 in Theorem 1.

(Sufficiency) Assume that Axioms 1 and 6-9 hold. The attention probability π

and the preference ordering ≻ are defined in the same way as the proof of Theorem
1. For the associative network G, let (x, y) ∈ G if and only if either (1) x = y, or
(2) x ̸= y and there exists A ∈ M such that x ⊢ A and x /∈ c(Axy, ∅). We proceed
with a sequence of lemmas.

Lemma 8. For all x ∈ X and A ∈ M, if x ⊢ A, then x ∈ c(Ax, ∅).
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Proof of Lemma 8. Since x ⊢ A, we have ∑
y∈A ρ(y|A, ∅) = ∑

y∈A ρ(y|Ax, ∅). Since
Φ(Ax, ∅) < Φ(A, ∅), we have ρ(x|Ax, ∅) ̸= 0, i.e., x ∈ c(Ax, ∅).

Lemma 9. The binary relation ≻ is a strict preference ordering and satisfies that
for all x, y ∈ X and A ∈ M, if x ≻ y and y ∈ c(A, ∅), then ρ(x|A, ∅) = ρ(x|A\y, ∅).

Proof of Lemma 9. The claim that x ≻ y and y ∈ c(A, ∅) imply ρ(x|A, ∅) =
ρ(x|A\y, ∅) follows directly from the definition of ≻ and Axiom 9. Similar to the
proof of Lemma 1, we can easily show that ≻ is well-defined for each pair of distinct
alternatives and satisfies asymmetry. To see that ≻ is transitive, suppose to the
contrary that there are three mutually distinct alternatives x, y and z such that
x ≻ y, y ≻ z, and z ≻ x. Consider three representative cases, where in case 1,
c(xyz, ∅) = xyz, in case 2, c(xyz, ∅) = xy, and in case 3, c(xyz, ∅) = x. We want
to show that all the three cases lead to contradiction. The proof for case 1 is the
same as that for case 1 in Lemma 1.

For case 2, since c(xyz, ∅) = xy and z ≻ x, we have c(yz, ∅) = y. It follows that
y ⊵ z, and thus by Axiom 9 and the definition of z ≻ x, we have for all A ∈ M
with x ∈ c(A, ∅), ρ(y|A, ∅) = ρ(y|A\x, ∅). By Axiom 6, x ∈ c(xy, ∅), and thus we
have ρ(y|xy, ∅) = ρ(y|y, ∅), which contradicts to the definition of x ≻ y.

For case 3, since c(xyz, ∅) = x, we have x ⊵ z. By the definition of z ≻ x, we
have z ∈ c(xz, ∅) and ρ(x|xz, ∅) ̸= ρ(x|x, ∅), which contradicts to x ⊵ z according
to Axiom 9.

Lemma 10. For all x ∈ X and A ∈ M with x ∈ A, if x /∈ c(A, ∅), then there
exists y ∈ ḠA(x) ∩ c(A, ∅) such that y ≻ x.

Proof of Lemma 10. We prove by induction on |A|. First, if |A| = 2, then A = xy

and x /∈ c(xy, ∅). Then by the construction of G, we have (x, y) ∈ G. By the
construction of ≻, we have y ≻ x. Therefore, the lemma holds when |A| = 2.

Assume that the lemma holds when |A| ≤ n, where n ≥ 2. Suppose now
|A| = n + 1. Since x /∈ c(A, ∅), by Axiom 7, there exists y ∈ A such that
c(A, ∅) = c(A\y, ∅). If y ̸= x, then x /∈ c(A\y, ∅) and by our induction hypothesis,
there exists z ∈ ḠA\y(x) such that z ≻ x, and we are done. Hence, we focus on
the case where x is the only alternative in A such that c(A, ∅) = c(A\x, ∅). By
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a similar argument, we focus on the case where for all z ∈ c(A, ∅), x ∈ c(A\z, ∅).
Thus, by Lemma 9, we have for all z ∈ c(A, ∅), z ≻ x.

To proceed, consider (A\x, ∅). We first show that if c(A\x, ∅) = A\x, then
|A\x| = 1, and we are done. To see this, suppose to the contrary that |A\x| ≥ 2,
and let y and z be two distinct alternatives in A\x. By Axiom 6 and the assumptions
of the case we consider, we have x ∈ c(A\y) = A\y and x ∈ c(A\z) = A\z. Since
for all x̂ ∈ A\x, we have x̂ ≻ x, by Lemma 9, we have x ⊢ A\(xy) and x ⊢ A\(xz).
It follows from Axiom 8 that x ⊢ A\x, which by Lemma 8 is a contradiction since
x /∈ c(A, ∅).

Finally, suppose that c(A\x, ∅) ̸= A\x. In this case, by Axiom 7, there exists
y ∈ A\x such that c(A\(xy), ∅) = c(A\x, ∅) = c(A, ∅). By Axiom 6, we have
c(A\y) = x ∪ c(A). Since x ∈ c(A\y, ∅) = x ∪ c(A) and for all z ∈ c(A), z ≻ x,
by Lemma 9, we have x ⊢ A\(xy). Since x /∈ c(A, ∅), we have (x, y) ∈ G. Since
y /∈ c(A\x, ∅), by the induction hypothesis, there exists z ∈ c(A\x, ∅) such that
z ≻ y and z ∈ ḠA\x(y). Thus, we have z ∈ ḠA(x). Moreover, since z ∈ c(A\x, ∅),
we have z ∈ c(A, ∅), and thus z ≻ x.

Lemma 11. For all x ∈ X and A ∈ M, if x ∈ c(A, ∅), then x = max(ḠA(x); ≻).

Proof of Lemma 11. We show that if there is an alternative in (A, ∅) that is
associated with x and ≻-better than x, then x is not chosen. By Axiom 6, it
suffices to show that for any sequence of alternatives (xk)n

k=1, where n ≥ 2, if for
all k ∈ {1, ..., n − 1}, xn ≻ xk and (xk, xk+1) ∈ G, then x1 /∈ c(x1...xn, ∅). We show
this by induction on n. First, consider the case where n = 2. We have (x1, x2) ∈ G
and x2 ≻ x1. Suppose to the contrary that x1 ∈ c(x1x2, ∅), then by Lemma 9 and
the construction of ≻, we have c(x1x2, ∅) = x1x2 and ρ(x2|x1x2, ∅) = ρ(x2|x2, ∅),
i.e., x1 ⊢ x2. However, since (x1, x2) ∈ G, by the construction of G, we can find
A ∈ M such that x1 ⊢ A and x1 /∈ c(Ax1x2, ∅). By Axiom 8, we have x1 ⊢ Ax2,
and by Lemma 8, we have x1 ∈ c(Ax1x2, ∅), which is a contradiction. Thus, we
must have x1 /∈ c(x1x2, ∅).

Next, suppose that the induction hypothesis holds for n ≤ m (m ≥ 2). We
consider the case where n = m + 1. Since for all k ∈ {1, ..., n − 1}, xn ≻ xk,
we have c(x2...xn, ∅) = xn by our induction hypothesis. Suppose to the contrary
that x1 ∈ c(x1...xn, ∅), by Axiom 6, we have c(x1...xn, ∅) = x1xn. By Lemma 9,
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we have ρ(xn|x1...xn, ∅) = ρ(xn|x2...xn, ∅). Thus x1 ⊢ x2...xn. Since (x1, x2) ∈ G,
we can find A ∈ M such that x1 ⊢ A and x1 /∈ c(Ax1x2, ∅). By Axiom 8, we
have x1 ⊢ Ax2...xn, and by Lemma 8, we have x1 ∈ c(Ax1...xn, ∅). It follows
from Axiom 6 that x1 ∈ c(Ax1x2, ∅), which is a contradiction. Therefore, we have
x1 /∈ c(x1...xn, ∅).

With Lemmas 9, 10 and 11, the rest of the proof is the same as that of Theorem
1, and we omit it.

Proof of Propsition 4. Consider a choice rule ρ that is represented by (π, G, ≻).
We first show Gρ ⊆ Gc. Consider (x, y) ∈ Gρ with x ̸= y. By the definition of Gρ,
there exists A ∈ M such that x ⊢ A and x /∈ c(Axy, ∅). If A = ∅, then x /∈ c(xy, ∅),
which implies that (x, y) ∈ Gc. If A ̸= ∅, then we can infer that

a. (x, y) ∈ G,

b. there is y′ ∈ A such that (y, y′) ∈ G,

c. for all z ∈ c(A, ∅), z ≻ x, and

d. for all w ∈ A, (x, w) /∈ G.

We can find a sequence of mutually distinct alternatives (xk)n
k=1 in Axy such

that x1 = x, x2 = y, xn ∈ c(A, ∅), and for all k ∈ {1, ..., n − 1}, (xk, xk+1) ∈
G and xn ≻ xk. It follows that c({x3, ..., xn}, ∅) = c({x1, ..., xn}, ∅) = xn and
c({x1, x3, ..., xn}, ∅) = x1xn. By the definition of Gc, we have (x1, x2) ∈ Gc, i.e.,
(x, y) ∈ Gc.

Next, we show Gc ⊆ Gρ. Consider (x, y) ∈ Gc with x ̸= y. If x /∈ c(xy, ∅),
then (x, y) ∈ Gρ (since x ⊢ ∅). If there exists A ⊆ X\(xy) and z ∈ A such that
c(A, ∅) = c(Axy, ∅) = z and c(Ax, ∅) = xz, then it can be inferred that z ≻ x,
z ≻ y, and for all z′ ∈ A\z, z ≻ z′. We can also infer that (x, y) ∈ G and for all
z′ ∈ A, (x, z′) /∈ G. It follows that ρ(z|A, ∅) = ρ(z|Ax, ∅), and thus x ⊢ A. Since
x /∈ c(Axy, ∅), we have (x, y) ∈ Gρ. Therefore, Gρ = Gc.

For statement (2), we note that by the proof of the sufficiency part of Theorem
2, (π, Gρ, ≻) represents the choice rule as a RCAR. It is also clear by our previous
analysis that Gc ⊆ G. Thus statement (2) is true.
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