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Abstract

We propose and axiomatize a new rule, the contraction rule, for belief updating

in the presence of ambiguity. With the rule, a realized event renders an individual’s

belief unambiguous if and only if the event has small ambiguity. The rule is insensitive

to unlikely priors, independent of the order in which multiple pieces of information

arrive, and consistent with recent experimental findings on updating ambiguous

information. We also show that the rule can be utilized by a dynamically inconsistent

individual to maximally align her future choices with her current preference through

suitable ambiguous information structures.
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1 Introduction

Ambiguity refers to the situation in which states of the world have no objective probability
distribution. Since the work of Knight (1921), Keynes (1921) and Ellsberg (1961), many
models have been proposed to rationalize decision makers’ (henceforth DM) choices over
bets on ambiguous states.1 In a seminal paper, Gilboa and Schmeidler (1989) (henceforth
GS) propose the maxmin expected utility (MEU) model according to which the DM
behaves as if she forms a set of priors over the states of the world and evaluates each
prospect according to its minimal expected utility over all her priors. In a wide variety of
applications, the assumption that economic agents are MEU maximizers leads to novel
economic implications.2

The prevalence of ambiguity in various economic scenarios and the critical role of
information in economic interactions underscore the significance of comprehending how
DMs react to new information in the presence of ambiguity. The relevance of this issue is
further accentuated by the ubiquity of ambiguous information, as argued by Epstein and
Halevy (2024). In this paper, we focus on MEU maximizers and explore how they update
their beliefs when new information arrives.

Our study is inspired by recent experimental evidence on how individuals react to
ambiguous information. A debatable issue related to ambiguous information is whether
it can lead to the dilation of the DM’s set of beliefs over payoff-relevant states, thereby
increasing her payoff-relevant ambiguity (Wasserman and Kadane, 1990). The two
benchmark updating rules in the MEU framework—the Full-Bayesian rule (henceforth
FB) and Maximum Likelihood (henceforth ML)—allow for such dilation even when there
is no ex-ante ambiguity on the payoff-relevant states.3 By contrast, Shishkin and Ortoleva
(2023) (henceforth SO23) find that ambiguity averse subjects typically do not dilate their
payoff-relevant belief sets after receiving ambiguous signals.4 The new updating rule that
we propose in this paper—the contraction rule—accommodates this new finding and does
not lead to belief dilation in general.

To better demonstrate the contraction rule and to highlight its normative appeal,
consider the following motivating example. A judge is contemplating the most suitable
punishment for a suspect based on the information (signal) provided by the investigator.
The suspect can either be innocent (dI) or guilty (dG), and the investigator can send

1See, for instance, Schmeidler (1989), Klibanoff, Marinacci, and Mukerji (2005), Maccheroni, Marinacci,
and Rustichini (2006), Chew and Sagi (2008), Gul and Pesendorfer (2014), etc.

2The mechanism design literature has extensively explored the optimal design of mechanisms for
both maxmin agents and principals. For example, Wolitzky (2016), Di Tillio, Kos, and Messner (2017),
and Tang and Zhang (2021), among others, investigate mechanism design with maxmin agents. Chung
and Ely (2007), Carroll (2019) and Brooks and Du (2021), among others, study the robust design of
mechanisms when the principal faces uncertainty and adopts the maxmin criterion.

3FB is also known as the prior-by-prior rule, and ML is also known as the Dempster-Shafer rule.
4See Section 4.1 for more details.
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either signal θ1 or θ2. The judge has ambiguity over the interpretations of the signals,
resulting in two prior beliefs over S = {dI , dG} × {θ1, θ2}, as shown in Table 1, where
ϵ ∈ [0, 1/10) is a constant number.

(dI , θ1) (dI , θ2) (dG, θ1) (dG, θ2)
Prior 1 1/10 + ϵ 2/5 − ϵ 2/5 1/10
Prior 2 2/5 + ϵ 1/10 − ϵ 1/10 2/5

Table 1: Judge’s Prior Distributions

According to the priors, the judge has an unambiguous belief that the suspect has
probability 1/2 of being guilty. Upon receiving the signal, the judge updates her beliefs
regarding the suspect’s innocence and suggests a decision to the jury. We assume that
the judge is an MEU maximizer, and her utility function is given by

U(y, d) = −y2 + 2yId=dG
,

where d ∈ {dI , dG} denotes whether the suspect is indeed innocent or guilty, I is the
indicator function, and y ∈ [0, 1] denotes the severity of the punishment. According to the
utility function, punishment incurs a cost of y2, and the gain (2yId=dG

) from punishment
is positive only when the suspect is indeed guilty. When the judge’s belief is that the
suspect has a probability of either p or p̄ of being guilty (p ≤ p̄), her optimal punishment
y∗ solves

arg max
y∈[0,1]

min
p∈{p,p̄}

(
−y2 + 2yp

)
,

which leads to y∗ = p. In words, the judge tends to be lenient by suggesting the punishment
according to the lowest probability for the suspect to be guilty.

We first consider the case where ϵ = 0, and analyze the judge’s posteriors when she
uses FB or ML for belief updating. With FB, the judge updates every prior according to
the realized signal following the Bayes’ rule: When either θ1 or θ2 is observed, the judge
updates her belief to that the suspect has a probability that ranges from 1/5 to 4/5 of
being guilty. In this case, the judge’s posterior beliefs over {dI , dG} form a non-singleton
set that contains her prior belief, which we refer to as belief dilation. Notably, without
information, the judge would have suggested a punishment with severity 1/2, but given
the information, she would suggest a less severe punishment with severity 1/5 no matter
which signal she receives.

If the judge uses ML for belief updating, she only updates the priors that maximize
the probability of the realized signal following the Bayes’ rule. Since ϵ = 0, the two
priors both assign probability 1/2 to each one of the two signals, indicating that the two
priors are both updated regardless which signal is realized. Thus, ML leads to the same
predictions on the judge’s decisions as FB does.
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Nevertheless, the judge may find it hard to justify her recommended punishment to
the jury if she updates with either FB or ML. This is because both signals allow for two
symmetric interpretations that point in opposite directions, but the suggested punishment
would always be less severe than the ex-ante optimal punishment, regardless of the signal
that is realized. Another consequence of adopting the two rules is that the defense attorney
of the suspect can decrease the punishment by providing additional information that
enables symmetric but opposite interpretations. In conclusion, the excessive leniency
implied by FB and ML in this example may appear impractical, particularly given that
the maxmin criterion already proposes a lenient punishment.

In contrast to FB and ML, the contraction rule suggests a different punishment for
the suspect. Following the contraction rule, the judge would use the highest probability
of each tuple in {dI , dG} × {θ1, θ2} for belief updating. When θ1 is realized, the maximal
probabilities of (dI , θ1) and (dG, θ1) are both 2/5. The judge’s posterior belief is then
given by the normalization of the two probabilities, leading her to maintain the prior
belief over {dI , dG}. Similarly, the judge would maintain her prior belief when θ2 occurs.
Consequently, the judge would always suggest a punishment of severity 1/2 to the jury by
arguing that the new information is ambiguously uninformative and should be ignored.

While the contraction rule leads to the ignorance of the information when ϵ = 0, it
does not always predict so. To see this, assume that ϵ is positive. Compared with the
benchmark case where ϵ = 0, the joint probabilities of θ1 and dI increase, and those of θ2

and dI decrease. In this case, the contraction rule predicts that signal θ1 would increase
the judge’s belief over dI from 1/2 to (2 + 5ϵ)/(4 + 5ϵ), and signal θ2 would decrease the
judge’s belief over dI from 1/2 to (2 − 5ϵ)/(4 − 5ϵ).

Observe that in the example above, the contraction rule leads to the resolution of
ambiguity. This observation relates to a crucial feature of the contraction rule: The degree
of ambiguity on the realized event determines whether the information resolves the DM’s
ambiguity or not. More specifically, let S be the state space and P the DM’s set of priors
over S. An event, denoted by E, is a nonempty subset of S. The contraction measure,
denoted by µP |E, assigns each state in E a measure that equals its maximal ex-ante
probability and each state outside E a measure of zero. That is, for every s ∈ E and
s′ ∈ S\E, µP |E(s) = maxp∈P p(s) and µP |E(s′) = 0. The degree of ambiguity on E is
then determined by the value of the summation ∑

s∈E µP |E(s). If the degree of ambiguity
on E is small (∑

s∈E µP |E(s) ≤ 1), the realization of E resolves the DM’s ambiguity, and
the DM’s posterior is the normalization of the contraction measure µP |E. If the degree
of ambiguity on E is large (∑

s∈E µP |E(s) > 1), each prior in P is updated towards the
contraction measure to form a posterior, leading to a non-singleton set of posteriors, which
means that the DM’s ambiguity is not resolved. In our motivating example, since there
is no prior ambiguity over the innocence of the suspect, the ambiguity, which is only
contained in the signals, has a small degree and is fully resolved after updating.
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In Section 2.3, we compare the contraction rule with the two benchmark rules—FB
and ML—through a stylized example in which the realized event has large ambiguity. The
example demonstrates that the contraction rule moderates both FB and ML: The FB
posterior set is highly sensitive to extreme priors that assign near-zero probabilities to the
realized event, but the contraction posterior set is almost unaffected by such priors; ML
completely disregards priors that do not maximize the probability of the realized event
even though some of these priors are highly likely, while the contraction rule still updates
these priors by assigning slightly less weights to them. We then discuss scenarios in which
the contraction rule is more suitable to be applied than the rest two rules.

In Section 2.4, we show the divisibility of the contraction rule. That is, the contraction
posterior set remains unchanged regardless of the order in which multiple pieces of
information arrive. This property is normatively appeal as it suggests that the DM’s
updating process is unaffected by certain factors that are irrelevant with the content of
the information. The divisibility of the contraction rule also enables us to obtain unique
predictions on the DM’s choices in dynamic settings in which the arrival order of multiple
pieces of information is unobserved or partially observed.

In Section 3, we present our axiomatic framework. We consider a DM who is an
MEU maximizer. The MEU representation allows us to uniquely identify the DM’s set
of beliefs. We consider a rich data set that documents the DM’s preferences in different
choice scenarios. An updating rule is then defined as a function that maps each ex-ante
preference of the DM and each piece of information to an ex-post preference.

We characterize the contraction rule with six axioms. The Alignment Consistency
and Sensitivity Congruence axioms are consistency conditions imposed on the DM’s
updating behavior when ex-ante ambiguity remains unresolved after updating, and the
Sensitivity Independence axiom is the consistency condition when updating leads to
ambiguity resolution. The axiom of Non-Ambiguity Persistence is the key departure
of the contraction rule from the existing rules, which posits that information does not
render an unambiguous prior over the payoff-relevant states ambiguous.5 The axiom
of Increased Sensitivity after Updating is our key behavioral axiom. The underlying
behavioral postulate of this axiom is that the DM should become more sensitive to payoff
differences on a given state after new information than before, provided that the new
information does not rule out the state. While this postulate cannot be satisfied universally,
the axiom of Increased Sensitivity after Updating requires the DM’s updating behavior to
satisfy this postulate to the largest possible extent. Together with the Continuity axiom,
the aforementioned axioms fully characterize the contraction rule.

In Section 4, we provide several applications of the contraction rule. We first study
the empirical relevance of the contraction rule. We show that a large proportion of the

5According to our motivating example, FB and ML violate this axiom.
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experimental and empirical findings in SO23 and Liang (forthcoming) (henceforth L24)
can be addressed by the rule. We then investigate the information design problem when
ambiguous information is available. We show that by adopting the contraction rule for
belief updating, an individual can design suitable information structure to manipulate her
future choices to the largest extent if her future preference is not fully aligned with her
current preference. Therefore, the contraction rule, combined with suitable information,
is a valid approach for exercising self-control.

Our paper is part of the body of literature that examines belief updating in non-
Bayesian frameworks (e.g., Epstein and Schneider (2007, 2008), Sadowski and Sarver
(2021), Zhao (2022) and Ke, Wu, and Zhao (2023)). Proposed by Jaffray (1988), FB is
analyzed by Wasserman and Kadane (1990) and Jaffray (1992) and axiomatized by Pires
(2002). Introduced by Dempster (1967) and Shafer (1976), ML is axiomatized by Gilboa
and Schmeidler (1993) and Cheng (2022). Motivated by recent empirical findings, this
paper contributes to the literature by providing a new updating rule that accommodates
these findings. Similar to the updating rules proposed by Kovach (2023) and Cheng (2022)
which nest FB and ML, the contraction rule also moderates FB and ML but does not
result in belief dilation under generic conditions.

Our study is also related to the literature on dynamically consistent updating behavior,
as surveyed by Gilboa and Marinacci (2013). Epstein and Schneider (2003) show that
dynamic consistency is maintained when the DM has “rectangular” sets of priors and
updates according to FB. Hanany and Klibanoff (2007, 2009) introduce the dynamic
consistency updating rule, which enables the DM to devise an optimal contingent plan
based on the information she might obtain and update her beliefs in a way that makes
it optimal for her ex-post self to follow the contingent plan. The dynamic consistency
updating rule violates consequentialism as the ex-post beliefs of the DM may depend on
unrealized parts of the choice problem, whereas the contraction rule violates dynamic
consistency but satisfies consequentialism, as it updates each set of priors to some set of
posteriors supported in the realized event and is independent of the choice problem faced
by the DM.

Another stream of literature concerns the martingale property of updating ambiguous
beliefs, with a distinctive paper in this line being Gul and Pesendorfer (2021) in which the
proxy rule is introduced. The core axiom of the proxy rule is “not all news is bad news,”
meaning that given a prospect and a set of potentially realized signals, there exists one
signal whose realization does not decrease the DM’s evaluation of the prospect. Similarly,
since the contraction rule does not lead to belief dilation in general, it implies that “a
piece of news cannot be bad for all prospects.” That is, the realization of a given signal has
to weakly increase the DM’s evaluation towards at least one uncertain prospect. Another
feature shared by the two rules is that they both predict that information does not render
the DM’s unambiguous payoff-relevant belief ambiguous. While the proxy rule is used for
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updating maxmin preferences that allow for totally monotone capacities, the contraction
rule can be used for updating arbitrary maxmin preferences.6

Several experimental studies directly test how subjects react to ambiguous information,
including Cohen, Gilboa, Jaffray, and Schmeidler (2000), Dominiak, Duersch, and Lefort
(2012), Ert and Trautmann (2014), Moreno and Rosokha (2015), Kellner, Le Quement, and
Riener (2022), Epstein and Halevy (2024), among others. Our model provides consistent
predictions with several findings that cannot be accommodated by FB and ML. Specifically,
we show that the contraction rule does not render the DM’s unambiguous payoff-relevant
belief ambiguous (SO23) and predicts under-reaction to ambiguous information (L24).
We also demonstrate in Sections 4.1 and 4.2 that our model can accommodate some other
findings by SO23 and L24.

Our paper is also related to the literature that examines how ambiguous information
impacts decision-making in interactive settings involving multiple players. This literature
includes works such as Blume and Board (2014), Bose and Renou (2014), Kellner and
Le Quement (2017), Kellner and Le Quement (2018), Beauchêne, Li, and Li (2019), and
Chen (2023), etc. Since the contraction rule does not lead to belief dilation in general, it
can be considered as an alternative approach for the applications that involve updating
ambiguity to disentangle the influence of belief dilation from the effects of other features
of ambiguity. In Section 4.3, we provide one such application by exploring the optimal
ambiguous information design with the contraction rule. This application demonstrates
how the contraction rule can provide new insights to the literature on information design
and, more broadly, the literature on interactive decision-making.

The rest of the paper is organized as follows. In Section 2.1, we set out the basic
definitions used in the paper. We formally introduce the contraction rule in Section 2.2
and discuss its properties in Sections 2.3 and 2.4. We characterize the contraction rule in
Section 3. Section 4 contains empirical evidence and applications of the contraction rule.
All omitted proofs can be found in the Appendix.

2 Model

2.1 Preliminary

State space and measures. Let S be a state space that has infinitely many states.
A measure π over S is said to have a finite support if there exists finite Ŝ ⊆ S such
that π(S\Ŝ) = 0. Denote by M(S) the set of all measures over S with finite supports.
Consider an arbitrary nonempty subset M of M(S). The set M is said to be finitely

6In the Online Appendix A of SO23, they show that the set of priors satisfying their assumptions cannot
induce a totally monotone capacity. Thus, the proxy rule cannot be directly applied to accommodate
their findings.
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supported if there is finite Ŝ ⊆ S such that for every π ∈ M, π(S\Ŝ) = 0. If M is finitely
supported and maxs∈S (supπ∈M π({s})) < +∞, then define µM as the measure in M(S)
such that for every s ∈ S, µM({s}) = supπ∈M π({s}). For all Ŝ ⊆ S and π ∈ M(S), let
π|Ŝ be the measure in M(S) that satisfies (π|Ŝ)(E) = π(E ∩ Ŝ) for all E ⊆ S, and let
M|Ŝ = {π|Ŝ : π ∈ M}. For any finite partition Π = {Si}n

i=1 of S and π ∈ M(S), let πΠ

be the measure induced by π over the algebra generated by Π such that πΠ(Si) = π(Si)
for all i ∈ {1, ..., n}. Correspondingly, define MΠ = {πΠ : π ∈ M}.

For all π, π′ ∈ M(S) and α, β ∈ R, if απ({s}) + βπ′({s}) ≥ 0 for every s ∈ S, then
let απ + βπ′ be the measure in M(S) such that for every E ⊆ S, (απ + βπ′)(E) =
απ(E) + βπ′(E). For any nonempty M, M′ ⊆ M(S), let αM + βM′ = {απ + βπ′ : π ∈
M, π′ ∈ M′} if each απ + βπ′ is a well-defined measure in M(S). For any nonempty
M ⊆ M(S), let co(M) be the convex hull of M, i.e., π ∈ co(M) if and only if there exist
{πi}n

i=1 ⊆ M and {αi}n
i=1 ⊆ R++ with n ∈ N+ such that ∑n

i=1 αi = 1 and π = ∑n
i=1 αiπi.

Probability measures and events. Denote by ∆(S) ⊆ M(S) the set of all finitely
supported probability measures over S. For every π ∈ M(S) with π(S) > 0, denote by
π the normalized probability measure of π such that for every E ⊆ S, π(E) = π(E)

π(S) . For
any π, π′ ∈ M(S) with π(S) ≤ 1 and π′(S) > 1, define Φ(π, π′) as the unique probability
measure in co({π, π′}), i.e.,

Φ(π, π′) = π′(S) − 1
π′(S) − π(S)π + 1 − π(S)

π′(S) − π(S)π′.

A set of probability measures P is said to be convex if for all p, q ∈ P and α ∈ [0, 1],
αp + (1 − α)q ∈ P , and closed if it is a closed subset of RS when each p ∈ P is viewed
as a vector in RS. Let P be the collection of nonempty, finitely supported, convex and
closed sets of probability measures over S.

An event is a nonempty and finite subset of S. Let S be the collection of all events.
For all P ∈ P and E ∈ S, E is P -non-null if there exists p ∈ P such that p(E) > 0;
otherwise, we say that E is P -null. Denote by SP the set of all P -non-null events.

Acts and evaluations. Let X be a nonempty and convex set of consequences. An act is
a function f : S → X that maps each state to some consequence. We also use each x in
X to denote the constant act that maps each state to x. Let F denote the set of all acts.
For all f ∈ F , p ∈ ∆(S), and function u : X → R, define u(f ; p) = ∑

s∈S p(s)u(f(s)), and
for every nonempty P ⊆ ∆(S), define u↓(f ; P ) = infp∈P u(f ; p). For any acts f and g and
E ⊆ S, we write f

E=g if f and g agree on E, and denote by fEg the act that equals f on
E and equals g on S\E. For any given α ∈ [0, 1], let αf + (1 − α)g be the mixture act of
f and g such that for all s ∈ S, (αf + (1 − α)g)(s) = αf(s) + (1 − α)g(s). Throughout
the paper, we write s for {s} whenever there is no confusion.
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2.2 Contraction Rule

In this section, we introduce the contraction rule. For every P ∈ P and P -non-null event
E, the contraction posterior set Qc(P, E) is defined as follows:

Qc(P, E) =


{µP |E}, if µP (E) ≤ 1,

{Φ(p|E, µP |E) : p ∈ P}, if µP (E) > 1.
(1)

Recall that µP |E is defined such that for all s ∈ E, µP |E(s) = maxp∈P p(s), and for all
s /∈ E, µP |E(s) = 0. This measure is referred to as the contraction measure. With the
contraction rule, the DM updates every prior towards the contraction measure. When
µP (E) > 1, Φ(p|E, µP |E) is the unique probability measure between p|E and µP |E.
In this case, the posterior set is formed by projecting P |E onto the set of probability
measures over E in the direction towards µP |E. When µP (E) ≤ 1, each measure p|E is
first updated to the contraction measure, and the posterior is given by the normalization
of the contraction measure. Figure 1 illustrates these two cases.

s1

s2

1

1

p1

p2

0

q1

q2

µP |E

(a) µP (E) > 1

s1

s2

1

1

p̂1

p̂2

0

µP̂ |E

µP̂ |E

(b) µP̂ (E) ≤ 1

Figure 1: For both (a) and (b), all priors have support {s1, s2, s3}. We depict each prior in the
2-dimensional space, where the horizontal axis denotes the probability of s1, and the vertical axis denotes
the probability of s2. The realized event E is {s1, s2} for both (a) and (b). In (a), the prior set P
is the line segment between p1 and p2, and the contraction posterior set is the line segment between
q1 = Φ(p1|E, µP |E) and q2 = Φ(p2|E, µP |E). In (b), the prior set P̂ is the line segment between p̂1 and
p̂2, and the contraction posterior set is {µP̂ |E}.

We interpret the value of µP (E) as an indicator of the degree of ambiguity on E.7

When µP (E) ≤ 1, E has small or no ambiguity, and the realization of E renders the
DM’s belief unambiguous. When µP (E) > 1, E has large ambiguity, and the DM’s
ambiguity remains unresolved after E occurs. In the latter case, the contraction measure
is maintained after updating, as stated by the following proposition.

7For the measurement of ambiguity of alternatives, see, for instance, Izhakian (2020).
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Proposition 1. For all P ∈ P and E ∈ SP , |Qc(P, E)| = 1 if and only if µP (E) ≤ 1; in
the case where µP (E) > 1, µP |E = µQc(P,E).

We would like to emphasize that setting µP (E) = 1 as the cutoff for ambiguity
resolution is not ad hoc. In fact, it can be implied by two postulates of belief updating,
which we explain in detail below.

Postulate 1 states that the DM should rely solely on prior distributions over the
realized event E to update her beliefs. Consequently, the DM’s set of posteriors is a
function of P |E.8

To state Postulate 2, we assume that the state space takes the product structure
S = D×Θ, where D contains all payoff-relevant states, and Θ contains all signals. Postulate
2 states that if the DM’s prior belief set P induces a unique marginal distribution on D,
then the DM’s ex-post belief set over D should also be a singleton, regardless of which
signal in Θ is realized. According to Postulate 2, if the DM has an unambiguous belief
over payoff-relevant states, then new information should not render her belief ambiguous.
The following example illustrates why the two postulates imply the cutoff for ambiguity
resolution to be µP (E) = 1.

Example 1. Consider two prior belief sets P1 = co({p1, p̂1}) and P2 = co({p2, p̂2}) with
support {d1, d2} × {θ1, θ2}. The distributions of the priors are presented in Table 2. The
realized event is E = {(d1, θ1), (d2, θ1)}, i.e., signal θ1.

(d1, θ1) (d1, θ2) (d2, θ1) (d2, θ2)
p1 0.1 0.2 0.6 0.1
p̂1 0.4 0.1 0.3 0.2
p2 0.1 0.3 0.6 0
p̂2 0.4 0 0.3 0.3

Table 2: Distributions of p1, p̂1, p2, and p̂2 in Example 1

In Example 1, since p1|E = p2|E and p̂1|E = p̂2|E, we have P1|E = P2|E. Postulate 1
then implies that the two prior belief sets should be updated to the same set of posteriors
when E occurs. As both p2 and p̂2 assign a probability of 0.4 to {d1} × Θ and 0.6 to
{d2} × Θ, P2 is unambiguous on {d1, d2}. Postulate 2 then implies that P2 is updated to
a singleton posterior set given θ1, and so is P1.

Based on the above analysis, for any given prior belief set P1, if we can construct
another belief set P2 that is unambiguous on {d1, d2} and satisfies P2|E = P1|E, then by
the two postulates, P1 should be updated to a singleton belief set after the realization
of θ1, i.e., the ambiguity is fully resolved. It turns out that the condition µP1(E) ≤ 1 is

8It is worth noting that both FB and ML satisfy Postulate 1. Formal definitions of FB and ML can
be found in Section 2.3.
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both sufficient and necessary for us to construct such a belief set P2.9 Therefore, the two
postulates jointly justify the cutoff for ambiguity resolution.

To proceed, we discuss the case in which the information does not resolve the ambiguity.
In this case, the set of posteriors is Qc(P, E) = {Φ(p|E, µP |E) : p ∈ P}, where

Φ(p|E, µP |E) = µP (E) − 1
µP (E) − p(E)p|E + 1 − p(E)

µP (E) − p(E)µP |E. (2)

Two observations based on equation (2) should be noted. First, the mixture weight
µP (E)−1

µP (E)−p(E) of p|E is an increasing function of p(E). This captures how the DM incorporates
the likelihoods of the priors into the updating process: If a prior assigns a higher probability
to E, then it is considered more likely given the information and thus weighed more. In
particular, if p(E) = 1, then Φ(p|E, µP |E) = p|E. Hence, a prior is entirely preserved
when it is fully consistent with the information. Second, the mixture weight of p|E is
an increasing function of µP (E). As µP (E) increases, the information becomes more
ambiguous and thus less informative. As a result, the DM relies more on her priors.

Our next proposition demonstrates that the contraction posterior sets are well-behaved:
The set Qc(P, E) is always nonempty, convex and closed; if the new information is
uninformative, then the set of posteriors is the same as the set of priors.

Proposition 2. For all P ∈ P and E ∈ SP , Qc(P, E) ∈ P; if in addition p(E) = 1 for
all p ∈ P , then Qc(P, E) = P .

2.3 Applicability of the Contraction Rule

In this section, we compare the contraction rule with FB and ML to discuss situations
in which the contraction rule is more suitable to be applied. To start with, we formally
introduce FB and ML.

For all P ∈ P and P -non-null event E, the FB posterior set is defined as

Qfb(P, E) = cl
(
{p|E : p ∈ P, p(E) > 0}

)
,

where cl(·) denotes the closure of what is inside of the bracket. With FB, the DM updates
each prior to its posterior following the Bayes’ rule.

For all P ∈ P and P -non-null event E, the ML posterior set is defined as

Qml(P, E) = {p|E : p ∈ P such that p(E) ≥ p̂(E), ∀p̂ ∈ P}.

9To see the necessity, note that if µP1(E) > 1, then the existence of such a belief set P2 implies that for
all p ∈ P2, 1 = p({d1} × {θ1, θ2}) + p({d2} × {θ1, θ2}) ≥ µP2(E) = µP1(E) > 1, which is a contradiction.
For the sufficiency, note that we can shift probabilities outside of the realized event E to ensure that each
payoff-relevant state has a constant ex-ante probability. For instance, in Example 1, we can move p1’s
probability on (d2, θ2) to (d1, θ2) to obtain p2 and p̂1’s probability on (d1, θ2) to (d2, θ2) to obtain p̂2.
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With ML, the DM updates the priors that maximize the probability of the realized event
following the Bayes’ rule. Our next example highlights the differences among FB, ML,
and the contraction rule.

Example 2. An employer (she) is considering hiring a job seeker (he) whose true ability
can be high (sh), medium (sm), or low (sl). There are three possible types of job seekers,
where the type is the job seeker’s private information and correlates with his true ability.
Specifically, for every t ∈ {1, 2, 3}, a type-t job seeker’s ability is distributed according to
pt ∈ ∆({sh, sm, sl}), where:

p1(sh) = 6/25, p1(sm) = 14/25, p1(sl) = 1/5,

p2(sh) = 2/3, p2(sm) = 1/6, p2(sl) = 1/6,

p3(sh) = 1/20, p3(sm) = 1/5, p3(sl) = 3/4.

The employer is uncertain about the prior distribution of the three types, and as a result,
her prior beliefs over the job seeker’s ability are given by P = co({p1, p2, p3}). After
interviewing the job seeker, the employer finds the ability of the job seeker to be at least
of medium level, i.e., the information obtained by the employer through the interview is
E = {sh, sm}. If the employer updates with the contraction rule, FB, or ML, then her sets
of posteriors are given respectively by Qc(P, E) = co({q1, q2}), Qfb(P, E) = co({q̂1, q̂2}),
or Qml(P, E) = {q̂2}, where q1(sh) = 1 − q1(sm) = 11/25, q2(sh) = 1 − q2(sm) = 2/3,

q̂1(sh) = 1 − q̂1(sm) = 1/5, q̂2(sh) = 1 − q̂2(sm) = 4/5. We depict them in Figure 2.

sh

sm

1

1

p1

p2

0

q1

q2

p3

µP |E

(a) contraction posterior

sh

sm

1

1

p1

p2

0

q̂1

p3
q̂2p4

q̂4

(b) FB posterior

sh

sm

p3

1

1

p1

p2

0

q̂2

(c) ML posterior

Figure 2: (a) The triangle p1p2p3 constitutes the prior set P , and the line segment between q1 and q2 is
the contraction posterior set; (b) The triangle p1p2p3 constitutes the prior set P , and the line segment
between q̂1 and q̂2 is the FB posterior set; (c) The triangle p1p2p3 constitutes the prior set P , and {q̂2} is
the ML posterior set.

If the employer updates her beliefs with FB, she updates every prior to some posterior
regardless of the probability it assigns to the realized event. Thus, one consequence of
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adopting FB is that the employer’s posterior belief set can be sensitive to priors that
are less likely. In Example 2, p3 assigns a low probability to event E, meaning that p3

is unlikely to be the true prior given the information. Despite this, its Bayes’ posterior
q̂1—according to which the job seeker is very unlikely to have high ability—is maintained
in the posterior belief set. This posterior, which is significantly different from the Bayes’
posterior of p2 and more extreme than that of p1, may affect the employer’s final decision.10

Furthermore, priors that assign lower probabilities to the realized event are amplified more
by the Bayes’ rule, and thus changes among those priors can result in more significant
changes of the FB posterior set. To see this, suppose that p3 shifts slightly to p4 as
depicted in Figure 2(b). Then the prior set changes from co({p1, p2, p3}) to co({p1, p2, p4}),
resulting in the FB posterior set being enlarged from co({q̂1, q̂2}) to co({q̂4, q̂2}). Note
that p4 is even less likely than p3 given E, but it leads to a more extreme posterior q̂4

that may affect the employer’s decision even more.
If the employer updates her beliefs with ML, her posterior set becomes the singleton

set {q̂2}, which is shown in Figure 2(c). Unlike FB, ML only updates priors that are
most consistent with the information. Consequently, ML may rule out some reasonable
priors. In Example 2, prior p1 only assigns slightly less probability to E than p2 does,
but is disregarded by ML when E occurs. Since the Bayes’ posterior of p2 yields a high
probability for the job seeker to have high ability, the employer will become over-optimistic
about the ability of job seeker if she updates with ML.

The contraction rule moderates FB and ML in the sense that it updates all priors but
puts less weights to those that are less consistent with the information. As shown in Figure
2(a), with the contraction rule, the employer’s posterior set co({q1, q2}) is determined by
the more likely priors p1 and p2, and is unaffected by the less likely prior p3.

Based on Example 2, it appears that the contraction rule, as a less extreme rule
compared to FB and ML, is a more appropriate choice for situations where the DM wants
to consider all priors but also aims to minimize the impact of unlikely ones. Relevant
applications include the belief updating of judges, physicians, managers, etc. In those
scenarios, DMs do need to take into account unlikely priors but also need to discount them
properly either for fairness (judges) or to avoid over- or under-treatments (physicians).

The contraction rule is also useful in scenarios where there is large ambiguity on the
payoff-relevant states, but the available information is relatively informative. Formally, let
the state space be given by S = D × Θ, where D contains all payoff-relevant states, and Θ
contains all signals. Suppose that the DM is fully uncertain about the prior distributions
over D but is confident that the conditional distribution of Θ on D is given by χ.11

For simplicity, assume that for all θ ∈ Θ and d ∈ D, χ(θ|d) > 0. With FB, any signal

10For instance, the employer may evaluate the job seeker’s ability according to the minimal probability
for him to have high ability.

11That is, for each d ∈ D, χ(·|d) is a distribution over Θ
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realization does not change the the DM’s prior beliefs over D, i.e., she remains to be fully
uncertain about the payoff-relevant states. With ML, if θ ∈ Θ is observed, the DM will
rule out states in D that do not maximize χ(θ|d) all of a sudden, regardless of how close
the conditional probabilities of θ on those states are to the maximal one. By contrast, the
contraction rule suggests that the DM maintains all states in D and updates her beliefs
over D proportionally according to (χ(θ|d))d∈D.

The contraction rule can also be useful when the ambiguity mainly comes from the
new information, i.e., the DM has small ambiguity about the prior distribution of the
payoff-relevant states in D, but there is a significant level of ambiguity regarding how
states in D are correlated with signals in Θ. As we have illustrated in the Introduction, the
contraction rule leads to more justifiable posterior beliefs in such circumstances. In Section
4, we further show that the predictions of the contraction rule are largely consistent with
the experimental evidence in these scenarios.

Finally, we highlight one scenario in which the contraction rule may not be the preferred
rule for belief updating. Consider an urn containing a total of 90 balls, with 30 red balls
and 60 balls with an unknown composition of blue and white balls. Let a random ball
be drawn from the urn, and assume that the DM believes that the ball has a probability
of 1

3 of being red and a probability ranging from 0 to 2
3 of being blue (white). In such a

situation, if the DM is informed that the ball is not red, it appears more likely that she
will update her beliefs using FB instead of the contraction rule. That is, she will revise
her beliefs to that the ball has a probability ranging from 0 to 1 of being blue (white). In
this example, the source of ambiguity—the unknown composition of the blue and while
balls—is evident, and thus it seems to be more natural for the DM to backtrack the source
of ambiguity and revise her beliefs accordingly.

2.4 Divisibility

When a DM has multiple pieces of information, the order in which the information arrives
may affect the DM’s final beliefs. We say that an updating rule is divisible, or path-
independent, if the posterior set of the DM is unaffected by the arrival order of multiple
pieces of information. A divisible rule delivers unique predictions on the DM’s final beliefs
regardless of her information acquisition order. When there is no ambiguity, Cripps (2019)
provides a characterization for divisible rules. The next proposition demonstrates that
the contraction rule also satisfies divisibility.

Proposition 3. For all P ∈ P and E, F ∈ SP with F ⊆ E, Qc(Qc(P, E), F ) = Qc(P, F ).

The key observation that leads to Proposition 3 is that the contraction measure remains
the same if ambiguity remains unresolved, i.e., µQc(P,E)|F = µP |F (which is implied by
Proposition 1). Recall that with the contraction rule, the DM updates her priors towards
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the contraction measure. Therefore, as long as the contraction measure on F remains
unchanged with the arrival order of information, the DM’s final posterior set on F also
remains invariant. Essentially, one can show that FB is also a divisible rule by the same
argument: The origin—the measure that assigns each state a measure of zero—serves as
a contraction point such that each prior is updated away from it following the Bayes’ rule.
Apparently, the contraction point of FB—i.e., the origin—remains unchanged regardless
of the arrival order of multiple pieces of information.

3 Axiomatic Foundation

In this section, we present the MEU model introduced by GS. The model provides a
unique identification of the DM’s belief set. We then axiomatize the contraction rule
based on the MEU framework.

3.1 Maxmin Expected Utility

A preference of the DM is a binary relation ≿ over the set of acts F . We say that a
preference ≿ admits a simple MEU representation if there exists P ∈ P and a non-
constant and affine utility function u : X → R such that for all f, g ∈ F , f ≿ g if and
only if u↓(f ; P ) ≥ u↓(g; P ).12 We refer to such a preference as a simple maxmin preference
and say that it is represented by (u, P ). Denote by R∗ the set of all simple maxmin
preferences. The following axioms characterize R∗.

Axiom M1—Weak Order: The preference ≿ is complete and transitive.
Axiom M2—Certainty-Independence: For all f, g ∈ F , x ∈ X, and α ∈ (0, 1), f ≻ g

if and only if αf + (1 − α)x ≻ αg + (1 − α)x.
Axiom M3—Weak Continuity: For all f, g, h ∈ F , if f ≻ g and g ≻ h, then there
exist α and β such that αf + (1 − α)h ≻ g and g ≻ βf + (1 − β)h.
Axiom M4—Monotonicity: For all f, g ∈ F , if f ≻ g, then there exists s ∈ S such
that f(s) ≻ g(s).
Axiom M5—Uncertainty Aversion: For all f, g ∈ F and α ∈ (0, 1), f ∼ g implies
αf + (1 − α)g ≿ f .
Axiom M6—Non-degeneracy: There exist f, g ∈ F such that f ≻ g.
Axiom M7—Finiteness: There exists a nonempty and finite subset Ŝ ⊆ S such that
for all f, g ∈ F , if for all s ∈ Ŝ, f(s) = g(s), then f ∼ g.

Axioms M1-M6 are introduced by GS to characterize the set of maxmin preferences.
The additional axiom, Axiom M7, ensures that the set of priors P in the representation is

12A function u is affine if for all x, y ∈ X and α ∈ (0, 1), u(αx + (1 − α)y) = αu(x) + (1 − α)u(y).

15



finitely supported. Together, Axioms M1-M7 are sufficient and necessary for a preference
to be a simple maxmin preference. The MEU representation allows a unique identification
of the DM’s set of beliefs: If a preference ≿ is represented by both (u, P ) and (û, P̂ ), then
P = P̂ , and u is an affine transformation of û.13

3.2 Updating rules

Collection of preferences. An updating rule specifies how a DM’s preference changes
with new information in all possible choice scenarios. To define updating rules, we consider
a collection of preferences R ⊆ R∗ that satisfy the following two properties:

(1) for all ≿1,≿2∈ R and x, y ∈ X, x ≿1 y if and only if x ≿2 y, and
(2) for all R̄ ⊆ R∗ such that R ⊊ R̄, the set R̄ violates condition (1).

We interpret R as a data set that includes the DM’s preferences in various choice
scenarios, and interpret the state space S as an abstract space used for storing those
preferences. To understand this interpretation, consider a choice scenario (H,⊵), where
the nonempty and finite set H is the actual state space, and ⊵ is the DM’s actual maxmin
preference over the set of actual acts XH . We can transfer the preference ⊵ to elements
in R as follows. For all injection γ : H → S, we can define ≿γ∈ R such that for all
f, g ∈ F , f ≿γ g if and only if f ◦ γ ⊵ g ◦ γ.14 Following this construction procedure,
we can consider many choice scenarios {(Hi,⊵i)}i∈I of the DM, and transfer each one of
them to elements in R.

With the above interpretation in mind, property (1) states that the DM’s preference
over the set of consequences X remains the same in different choice scenarios, and the
variation of the DM’s preferences across different scenarios is driven by the change of
her beliefs. Property (2) is a richness condition, which states that our data set contains
all simple maxmin preferences that induce the same preference over X. Essentially, this
means that for every P ∈ P, we can find some choice scenario in which the DM’s set of
beliefs is given by P (under some properly defined injection γ).

New information and updating rules. The new information takes the form of events
that happen with non-zero probabilities.15 Those events are referred to as non-null events.
Specifically, for a given simple maxmin preference ≿, a set E ⊆ S is said to be ≿-null if
for all f, g ∈ F such that f

S\E= g, we have f ∼ g; otherwise, E is said to be ≿-non-null.

13The function u is an affine transformation of û if there exist real numbers λ > 0 and β such that for
all x ∈ X, u(x) = λû(x) + β.

14Note that f ◦ γ (or g ◦ γ) is an element of XH satisfying that for all h ∈ H, f ◦ γ(h) = f(γ(h)). Since
⊵ allows for a maxmin representation and H is finite, the induced preference ≿γ is a simple maxmin
preference.

15We do not model how DMs react to unexpected information in this paper. For theories of updating
events with zero probability, see, for example, Ortoleva (2012).
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Clearly, if ≿ is represented by (u, P ), then E is ≿-null if and only if E is P -null. We
denote by S(≿) the set of all ≿-non-null events, and define the set G ⊆ R × S such that
(≿, E) ∈ G if and only if E ∈ S(≿).

Definition 1. An updating rule (over preferences) is a function Γ : G → R such that for
all (≿, E) ∈ G, (i) S\E is Γ(≿, E)-null, and (ii) if S\E is ≿-null, then Γ(≿, E) =≿.

We denote Γ(≿, E) by ≿E,Γ, and by ≿E whenever the updating rule is clearly specified.
An updating rule maps the DM’s ex-ante preference ≿ and information E to her ex-post
preference ≿E. Condition (i) states that given event E, the DM will ignore states outside
of E. Condition (ii) states that the DM does not change her preference if the new
information is not informative.

Definition 2. An updating rule Γ is the contraction rule (respectively FB and ML) if for
all (≿, E) ∈ G with ≿ being represented by (u, P ), ≿E can be represented by (u, Qc(P, E))
(respectively (u, Qfb(P, E)) and (u, Qml(P, E))).

An implicit assumption on updating rules. Definition 1 entails an implicit assumption
on the DM’s updating. Recall that we interpret S as an abstract space for storing the DM’s
actual preferences in different choice scenarios. Consider two choice scenarios (H1,⊵1)
and (H2,⊵2), where both H1 and H2 are nonempty and finite, and both ⊵1 and ⊵2 allow
for maxmin representations. The two choice scenarios are said to be isomorphic if there is
a bijection ϕ : H1 → H2 such that for all f, g ∈ XH2 , f ⊵2 g if and only if f ◦ ϕ ⊵1 g ◦ ϕ.
In such a case, the two actual preferences ⊵1 and ⊵2 are said to be ϕ-identical. Note
that two isomorphic choice scenarios can induce the same preference ≿ in R through
some properly defined injections γ1 : H1 → S and γ2 : H2 → S.16 However, irrespective
of whether ≿ is induced by ⊵1 or ⊵2, the given updating rule always updates ≿ to ≿E

when event E occurs. Hence, the implicit assumption here is that identical preferences
are updated to identical ex-post preferences under identical information. More specifically,
consider a ≿-non-null event E. For each i ∈ {1, 2}, define Ei = γ−1

i (E) ⊆ Hi, and let
⊵i

Ei
be the DM’s ex-post preference in choice scenario (Hi,⊵i) after Ei is realized. The

implicit assumption essentially requires that if ⊵1 and ⊵2 are ϕ-identical, then ⊵1
E1 and

⊵2
E2 must also be ϕ-identical, ensuring that they can induce the same ex-post preference
≿E in R through the injections γ1 and γ2, respectively.

3.3 Characterization

In this section, we characterize the contraction rule. Throughout the section, all preferences
are assumed to be in R, and thus they share the same ranking for constant acts.

16The two injections γ1 and γ2 should satisfy γ1 = γ2 ◦ ϕ and γ2 = γ1 ◦ ϕ−1, where ϕ−1 : H2 → H1 is
the inverse of ϕ.
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Definition 3. For all ≿∈ R and partition Π = {Si}n
i=1 of S, ≿ is Π-unambiguous if

for all α ∈ (0, 1) and f, g ∈ F that are measurable with respect to Π, f ∼ g implies
αf + (1 − α)g ∼ f ; otherwise, ≿ is Π-ambiguous. The preference ≿ is unambiguous if for
all partition Π′ of S, ≿ is Π′-unambiguous; otherwise, ≿ is ambiguous.

Definition 3 divides all preferences into two categories: unambiguous and ambiguous.
A preference is considered unambiguous if it is not in favor of or against randomization.
For any given maxmin preference, it is unambiguous if and only if it can be represented
by some (u, P ) such that P is a singleton set.

Definition 4. For all {≿k}3
k=1 ⊆ R and E ∈ ∩3

i=1S(≿i), ≿3 is E-aligned with (≿1,≿2)
if for all x, y ∈ X and f ∈ F , fEx ≿1 y and fEx ≿2 y imply fEx ≿3 y, and y ≿1 fEx

and y ≿2 fEx imply y ≿3 fEx.

Definition 4 introduces a new alignment relation that only involves acts taking constant
values on the complement of E. The restriction of a given preference on those acts can
be regarded as the preference on E, since the details of the preference outside of E are
ignored. By Definition 4, a given preference is E-aligned with two other preferences if,
for every act fEx and every constant act y, the given preference ranks the two acts
consistently with the other two preferences whenever the latter two share the same ranking
for the two acts. Lemma 3 in the Appendix characterizes this E-alignment relation.

The E-alignment of ≿3 with (≿1,≿2) also means that ≿3 lies between the latter two
preferences on E. More specifically, it means that the evaluation of any act fEx under
≿3 is always between its evaluations under ≿1 and ≿2. To see this, consider act fEx

and three constant acts y1, y2, and y3 that are equally good as fEx under ≿1,≿2, and
≿3, respectively. These constant acts can be viewed as the evaluations of fEx under the
three preferences. Without loss of generality (WLOG), assume that y1 is better than y2.
Since both ≿1 and ≿2 rank fEx weakly below y1 and weakly above y2, ≿3 should also do
so, indicating that y3—which is as good as fEx under ≿3—is ranked between y1 and y2.

Axiom 1—Alignment Consistency: For all {≿k}3
k=1 ⊆ R and E ∈ ∩3

k=1S(≿k), if ≿3

is E-aligned with (≿1,≿2), ≿1
E=≿2

E, and ≿1
E and ≿2

E are ambiguous, then ≿1
E=≿2

E=≿3
E.

Consider three choice scenarios such for every k ∈ {1, 2, 3}, the DM’s preference in
scenario k is given by ≿k. Assume that the DM’s preference on E in scenario 3 falls
between her preferences on E in scenarios 1 and 2. Axiom 1 applies to this situation and
states that if the DM updates her preferences in scenarios 1 and 2 to the same ex-post
preference after E occurs, then she should also do so in scenario 1, provided that ambiguity
is unresolved after updating. Intuitively, since the difference between ≿1 and ≿2 on E

disappears after E occurs, the difference between ≿1 and ≿3 on E, which is even smaller,
should also disappear after E occurs. Therefore, Axiom 1 posits that the more similar
two ex-ante preferences are, the more similar their ex-post preferences should be.
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Notably, Axiom 1 requires ≿1
E and ≿2

E to be ambiguous. This means that the
consistency condition, which stipulates that more similar ex-ante preferences are
updated to more similar ex-post preferences, only applies to scenarios where ambiguity
remains unresolved after updating. Intuitively, similar ex-ante preferences entail similar
informational contents on the realized event, indicating that the consistency condition
is naturally fulfilled when all available information is used for belief updating and can
be violated when only partial information is utilized. Therefore, Axiom 1 suggests that
the DM should utilize all available information for updating whenever she chooses not to
disregard the ambiguity. This is precisely the case with the contraction rule: When the
degree of ambiguity on the realized event is large, the DM utilizes all available information
by updating every prior towards the contraction measure to form its corresponding
posterior, resulting in a non-singleton set of posteriors.

The aforementioned discussion also indicates that FB generally satisfies the consistency
condition in Axiom 1. This is because with FB, the DM utilizes all information by updating
every prior to a posterior following the Bayes’ rule. Indeed, FB satisfies the following
stronger version of Axiom 1, which states that the consistency condition always holds.17

Axiom 1∗—Alignment Consistency∗: For all {≿k}3
k=1 ⊆ R and E ∈ ∩3

k=1S(≿k), if
≿3 is E-aligned with (≿1,≿2), and ≿1

E=≿2
E, then ≿1

E=≿2
E=≿3

E.

Next, we define the comparative sensitivity of two preferences on a given event E.

Definition 5. For all ≿1,≿2 ∈ R, E ∈ S(≿1) ∩ S(≿2), and λ ∈ [1, +∞), ≿2 is λ times
more E-sensitive than ≿1, denoted by ≿1(λ,E)

⇝ ≿2, if for all f ∈ F and x, y ∈ X, fEx ∼1 y

implies 1
λ
fEx + (1 − 1

λ
)x ∼2 y.

To understand Definition 5, first note that when ≿1(1,E)
⇝ ≿2, the two preference are

identical on E. When≿1(λ,E)
⇝ ≿2 with λ > 1, the only difference between the two preferences

on E is that the decision weight assigned by preference ≿2 to E is λ times more than
that by ≿1. Thus, whenever fEx is as good as y under ≿1, 1

λ
fEx + (1 − 1

λ
)x is as good

as y under ≿2. In Lemma 5, we provide a characterization result for this comparative
sensitivity relation.

Axiom 2—Sensitivity Congruence: For all {≿k}4
k=1 ⊆ R, E ∈ ∩4

k=1S(≿k), and
λ ∈ [1, +∞), if ≿3(λ,E)

⇝ ≿1, ≿4(λ,E)
⇝ ≿2, ≿3

E=≿4
E, and ≿k

E is ambiguous for all k ∈ {1, 2, 3, 4},
then ≿1

E=≿2
E.

Like Axiom 1, Axiom 2 applies to situations where ambiguity remains unresolved
after updating. We interpret this axiom as follows: If two preferences are updated to
identical ex-post preferences after the realization of event E, they should contain similar

17All claims regarding FB and their proofs can be found in the Online Appendix.
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information on E. Therefore, if two other preferences are λ times more E-sensitive than
the two given preferences respectively, they should also contain similar information on E

and be updated to identical ex-post preferences after E occurs.
Our next axiom concerns situations in which ambiguity is resolved after updating.

Axiom 3—Sensitivity Independence: For all ≿1,≿2 ∈ R, E ∈ S(≿1) ∩ S(≿2), and
λ ∈ [1, +∞), if ≿1(λ,E)

⇝ ≿2, and ≿2
E is unambiguous, then ≿1

E=≿2
E.

Axiom 3 states that if the only difference between two preferences is their decision
weights assigned to E, then they should be updated to the same ex-post preference when
E occurs, provided that ambiguity is resolved after updating. We note that if there is
ex-ante ambiguity on E, then the decision weight assigned to E is positively correlated
with the degree of ambiguity on E. Thus, Axiom 3 essentially posits that if ambiguity is
already resolved after updating, then the degree of ambiguity on the realized event will
no longer affect the DM’s ex-post preference.

By comparison, FB satisfies the following axiom that strengthens Axioms 2 and 3.

Axiom 3∗—Sensitivity Independence∗: For all ≿1,≿2 ∈ R, E ∈ S(≿1) ∩ S(≿2), and
λ ∈ [1, +∞), if ≿1(λ,E)

⇝ ≿2, then ≿1
E=≿2

E.

The next axiom is the key departure of the contraction rule from FB.

Axiom 4—Non-Ambiguity Persistence: For all ≿∈ R, E ∈ S(≿), and partition
Π = {Si}n

i=1 of S, if ≿ is Π-unambiguous, and |E ∩ Si| ≤ 1 for all i ∈ {1, ..., n}, then ≿E

is unambiguous.

We interpret each block Si in Axiom 4 as a payoff-relevant state and the realized event
E as a signal. With this interpretation, Axiom 4 states that if the DM is unambiguous
with respect to the payoff-relevant states at the ex-ante stage, then any information does
not render her ex-post preference ambiguous. Clearly, this axiom is violated by FB, as
shown by our motivating example in the Introduction.

The next axiom is the key behavior axiom of the contraction rule.

Axiom 5—Increased Sensitivity after Updating: For all ≿∈ R and E ∈ S(≿), if
≿E is unambiguous, then for all s ∈ E, x, y ∈ X, and f, g ∈ F , if f

S\s= g, g(s) ≻ f(s),
f ∼ x, f ∼E x and g ∼ y, then g ≿E y.

To understand Axiom 5, note that the act f serves as a benchmark: Its evaluation
remains to be x before and after the information. Since f

S\s= g, the difference between
the DM’s evaluations of f and g is driven by their differences on state s. The preference
relations g ∼ y and g ≿E y then reveal that the DM increases the evaluation of g relative
to f more after the information than before. Therefore, we interpret this axiom as
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postulating that the DM becomes more sensitive to payoff differences on state s if the state
is not ruled out by the information, provided that ambiguity is resolved after updating.

For any given preference ≿ and event E that is ≿-non-null, we say that ≿ satisfies
updating monotonicity on E if for all s ∈ E, x, y ∈ X, and f, g ∈ F , if f

S\s= g, g(s) ≻ f(s),
f ∼ x, f ∼E x and g ∼ y, then g ≿E y. It seems natural to require every preference to
satisfy updating monotonicity on every non-null event of it: The event, if occurs, would
rule out outside states, and thus each remaining state should play a more important role
in decision-making. In fact, updating monotonicity can be implied by dynamic consistency
under mild conditions.18 However, Axiom 5 only imposes this property on situations
where the updated preference becomes unambiguous. We justify this restriction via the
following proposition.

Proposition 4. Consider an arbitrary updating rule Γ that satisfies Axiom 4, and suppose
that for all ≿1,≿2 ∈ R and E ∈ S(≿1) ∩ S(≿2), ≿11,E

⇝≿2 implies ≿1
E=≿2

E. Then for all
≿∈ R and E ∈ S(≿) such that ≿E is ambiguous, there exists ≿′ ∈ R such that ≿1,E

⇝≿′,
and ≿′ violates updating monotonicity on E.

Recall that if ≿1,E
⇝≿′, then the two preferences are identical on E. Proposition 4

considers an updating rule that updates preferences that are identical on E to the same
ex-post preference when E occurs.19 Additionally, the proposition requires the updating
rule to satisfy Axiom 4, which is the crucial axiom that is satisfied by the contraction rule
but violated by other updating rules. By Proposition 4, the largest collection of classes of
identical preferences on which we can impose the property of updating monotonicity is
the collection of those that are updated to unambiguous preferences. This is precisely
what Axiom 5 posits.

Definition 6. For all ≿∈ R, sequence (≿k)+∞
k=1 in R, and event E, (≿k)+∞

k=1 converges to
≿ on E if for all f ∈ F and x, y ∈ X, fEx ≿k y for all k ∈ N+ implies fEx ≿ y, and
y ≿k fEx for all k ∈ N+ implies y ≿ fEx.

Our next axiom is the Continuity axiom.

Axiom 6—Continuity: For all ≿0 ∈ R, sequence (≿k)+∞
k=1 in R, and E ∈ ∩+∞

k=0S(≿k), if
(≿k)+∞

k=1 converges to ≿0 on E, then (≿k
E)+∞

k=1 converges to ≿0
E on E.

Together, Axioms 1-6 characterize the contraction rule.
18In the Online Appendix, we show that in a more general preference domain in which the preferences

are assumed to satisfy Axioms M1, M2 and M4, dynamic consistency implies updating monotonicity. This
preference domain includes the class of preferences that allow for dual-self expected utility representations
(Chandrasekher, Frick, Iijima, and Le Yaouanq, 2022) which generalize the maxmin representation.

19In fact, for any preferences ≿ and ≿′ and event E such that ≿1,E
⇝≿′, FB, ML, and the contraction

rule all update them to identical preferences when E occurs. By Lemma 5, this requirement is essentially
equivalent to postulate 1 that we discussed in Section 2.2.
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Theorem 1. An updating rule is the contraction rule if and only if it satisfies Axioms
1-6.

Sketch of the sufficiency part of the proof. Consider an updating rule Γ that
satisfies Axioms 1-6 and an arbitrary preference ≿ in R that is represented by (u, P ).
Our first step is to show that if ≿ is updated by Γ to some ex-post preference ≿E when E

occurs, then ≿E is unambiguous if and only if µP (E) ≤ 1. It then follows from Increased
Sensitivity after Updating that µP (E) = 1 implies ≿E to be represented by (u, {µP |E}).

The remaining two cases are µP (E) < 1 and µP (E) > 1. For the case µP (E) < 1, we
want to show that ≿E is represented by (u, {µP |E}). We show this by considering another
preference ≿′ that is represented by (u, P ′) such that P ′|E = λP |E where λ = 1

µP (E) . By
Lemma 5, we have ≿(λ,E)

⇝ ≿′. Therefore, by Sensitivity Independence, we have ≿E=≿′
E.

Since µP ′(E) = λµP (E) = 1, ≿′
E is represented by (u, {µP ′ |E}), i.e., (u, {µP |E}). Hence,

≿E is also represented by (u, {µP |E}).
For the case µP (E) > 1, we sketch its proof through Figure 3. We want to show

that when E occurs, ≿ is updated by Γ to ≿′, where ≿′ is represented by (u, Q) with
Q = Qc(P, E) (as shown in the figure). Let λ = µP (E), and consider preferences ≿1,
≿2 and ≿3 such that there are represented by P̂ , Q̂ and {µP̂ |E} respectively, where
λP̂ |E = P and λQ̂|E = Q. By Lemma 3, ≿2 is E-aligned with (≿1,≿3). This enables us
to apply some continuity arguments, together with Alignment Consistency and Sensitivity
Congruence, to show that the two preferences ≿ and ≿′, which satisfy ≿1(λ,E)

⇝ ≿ and
≿2(λ,E)
⇝ ≿′, should be updated by Γ to the same ex-post preference when E occurs.20

Clearly, since S\E is ≿′-null, ≿′ is updated to ≿′ by Γ when E occurs, and so is ≿.
Regarding Theorem 1, we have two remarks. First, our characterization result is not

only applicable to maxmin preferences, but also to maxmax preferences—the preferences
that capture ambiguity seeking behavior. Formally, a preference ≿ is a simple maxmax
preference if there is a non-constant and affine utility function u : X → R and a set
of probability distributions P ∈ P such that for all f, g ∈ F , f ≿ g if and only if
maxp∈P u(f ; p) ≥ maxp∈P u(g; p). Given a rich set of maxmax preferences R+ that
satisfies similar conditions as R, we can show that the contraction rule, defined on
R+, can be characterized by the same set of axioms, with a slight revision of Increased
Sensitivity after Updating.21 The proof strategy is the same as that for Theorem 1.

Second, among the axioms that characterize the contraction rule, two are not satisfied
by FB: Non-Ambiguity Persistence and Continuity. However, in the Online Appendix,

20Note that Alignment Consistency and Sensitivity Congruence cannot be directly applied here, as ≿1

and ≿2 are updated by Γ to an unambiguous preference when E occurs. See Lemma 19 for more details.
21All our definitions and notations can be directly applied to preferences in R+ without any further

modification. The revised version of the axiom of Increased Sensitivity after Updating states that for
all ≿∈ R+ and E ∈ S(≿), if ≿E is unambiguous, then for all s ∈ E, x, y ∈ X, and f, g ∈ F , if f

S\s= g,
f(s) ≻ g(s), f ∼ x, f ∼E x and g ∼ y, then y ≿E g.
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Figure 3: Graphic Illustration for the Case µP (E) > 1

we show that FB generically satisfies the Continuity axiom. Therefore, essentially, FB
only violates the axiom of Non-Ambiguity Persistence. We also show that FB can be
characterized by Axioms 1∗ and 3∗ in the Online Appendix.

4 Applications

Throughout this section, we assume that each prior of the DM is supported in Ŝ ⊆ S

where Ŝ = D × Θ. The set D is a finite payoff-relevant state space, and Θ is a finite signal
space. A piece of information takes the form of some signal θ ∈ Θ, i.e., event D × {θ}.
We fix Π̂ to be the partition {{d} × Θ : d ∈ D} of Ŝ.22

We consider three applications of the contraction rule. First, we connect the contraction
rule with the experimental findings by SO23 and show that the rule does not create belief
dilation under mild conditions. Second, we study how DMs update their beliefs with
information of unknown accuracy by associating the contraction rule with the findings
by L24. Finally, we consider an individual whose current and future preferences are not
aligned, and show that the individual can maximally align her future choices with her
current preference via ambiguous information if she adopts the contraction rule for belief
updating.

22We ignore all states outside of Ŝ since they play no role in the analysis.
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4.1 Dilation

SO23 study how ambiguous information shapes the DM’s beliefs over payoff-relevant
states. Through lab experiments, they empirically test the hypothesis that ambiguous
information increases payoff-relevant ambiguity and reject it. In what follows, we show
that the contraction rule provides consistent predictions with their findings.

Consider a DM with prior belief set P over D × Θ. A signal θ ∈ Θ is said to dilate
the DM’s payoff-relevant belief set under updating rule Q if PΠ̂ ⊊

(
Q(P, D × {θ})

)
Π̂

, i.e.,
after observing signal θ, the DM’s posterior belief set over D strictly contains her prior
one.23 The following proposition establishes a non-dilation result for the contraction rule
when D contains only two states.

Proposition 5. If |D| = 2, then for any signal θ such that D × {θ} is P -non-null, θ does
not dilate the DM’s payoff-relevant belief set under the contraction rule.

We discuss the special case of Proposition 5 where there are two symmetric signals.
This is exactly the case studied by SO23. Let D = {d1, d2} and Θ = {θ1, θ2}. Assume
that p ∈ P if and only if p(d1, θ1) = αβ, p(d1, θ2) = α(1 − β), p(d2, θ1) = (1 − α)(1 − β),
and p(d2, θ2) = (1 − α)β for some α ∈ [1/2 − a, 1/2 + a] and β = [1/2 − b, 1/2 + b], where
a ∈ [0, 1/2] and b ∈ (0, 1/2] are constants. That is, the DM believes the probability
of d1 to be at least 1/2 − a and at most 1/2 + a and the conditional probability of θ1

(respectively θ2) on d1 (respectively d2) to be at least 1/2 − b and at most 1/2 + b.
When a = 0, there is no ex-ante payoff-relevant ambiguity: The DM assigns probability

half to both d1 and d2. As shown by SO23, the realization of any signal dilates the DM’s
belief set over D if she updates with FB or ML. By contrast, if the DM updates with the
contraction rule, her ex-post belief over D would be the same as her ex-ante one. Thus, for
a given prospect (call it prospect K) that yields a high payoff on d1 and a low payoff on d2,
only the contraction rule predicts that information does not change the DM’s evaluation
over prospect K. This prediction is tested to be true for a large proportion of ambiguity
averse subjects by SO23.

When a > 0, there is ex-ante payoff-relevant ambiguity: The DM believes that the
probability of d1 ranges from 1/2 − a to 1/2 + a. For any given signal, there are two cases
to be considered with the contraction rule. If (1/2 + a)(1/2 + b) ≤ 1/2, then the signal
resolves the DM’s payoff-relevant ambiguity. In this case, the DM believes d1 and d2 to
be equally likely after observing the signal. If (1/2 + a)(1/2 + b) > 1/2, then the DM’s
beliefs are revised to that the probability of d1 ranges from 1 − (1/2 + a)(1/2 + b) to
(1/2+a)(1/2+b). In both cases, the information decreases payoff-relevant ambiguity. Thus,
an ambiguity averse DM increases her evaluation over prospect K after the information.

23Our definition of belief dilation is a weak version. Wasserman and Kadane (1990) define dilation as
the case in which every signal enlarges the payoff-relevant set of priors.
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This is indeed the case for a non-negligible proportion of ambiguity averse subjects in
SO23’s experiments.

Our next proposition provides generic conditions under which belief dilation does not
occur with the contraction rule: when there is no ex-ante payoff-relevant ambiguity, or
when the prior belief set is contained in the interior of ∆(D × Θ).

Proposition 6. If either (i) PΠ̂ is a singleton, or (ii) for all p ∈ P , d ∈ D and θ ∈ Θ,
p(d, θ) > 0, then no signal dilates the DM’s belief set over D under the contraction rule.

4.2 Information with Ambiguous Accuracy

In this section, we study how DMs react to information with unknown accuracy following
the framework of L24. Let D = {d1, d2} and Θ = {d̂1, d̂2}. The DM’s priors over D are
characterized by an interval [κ, κ] ⊆ (0, 1), i.e., she believes that the probability of d1

ranges from κ to κ. Following L24, we consider two scenarios.
In scenario 1, the DM can seek information from an expert with unknown accuracy.

The expert informs the DM of her prediction of the true state by sending either signal d̂1

or d̂2, where d̂1 and d̂2 refer to the prediction of d1 and d2, respectively. The DM believes
that there are two possible accuracy levels of the expert’s predictions: H and L. That is,
the DM considers two conditional probabilities of the signals: χH(d̂1|d1) = χH(d̂2|d2) = H

and χL(d̂1|d1) = χL(d̂2|d2) = L. We require that 1 > H > L > 0 and H + L > 1.24

Assume that the accuracy of the expert’s predictions is independent of the DM’s priors
over D. Thus, the DM’s prior set P over D × Θ is given by co({pκ,L, pκ,H , pκ,L, pκ,H}),
where for each κ ∈ {κ, κ} and J ∈ {L, H}, we have

pκ,J(d1, d̂1) = κJ, pκ,J(d1, d̂2) = κ(1 − J),

pκ,J(d2, d̂1) = (1 − κ)(1 − J), pκ,J(d2, d̂2) = (1 − κ)J.

In scenario 2, there is an expert with accuracy H+L
2 . Conditional on the true state

being di ∈ D, the probability for the expert predicting correctly is H+L
2 . The prior set of

the DM is given by co({pκ, pκ}) where for each κ ∈ {κ, κ},

pκ(d1, d̂1) = κ
H + L

2 , pκ(d1, d̂2) = κ(1 − H + L

2 ),

pκ(d2, d̂1) = (1 − κ)(1 − H + L

2 ), pκ(d2, d̂2) = (1 − κ)H + L

2 .

To proceed, consider two acts f and g where f(d1, d̂1) = f(d1, d̂2) = g(d2, d̂1) =
g(d2, d̂2) = 1 and f(d2, d̂1) = f(d2, d̂2) = g(d1, d̂1) = g(d1, d̂2) = 0. That is, f yields payoff

24If H + L < 1, we can exchange the labels of the two signals.
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1 on d1 and 0 on d2, and g yields 0 on d1 and 1 on d2.25 We compare the DM’s ex-post
evaluations over the two acts in the two scenarios. Let va

f and vu
f be the DM’s ex-post

evaluations of f after observing d̂1 in scenarios 1 and 2, respectively. Let va
g and vu

g be
the DM’s ex-post evaluations of g after observing d̂1 in scenarios 1 and 2, respectively.

Proposition 7. If the DM updates her beliefs with the contraction rule, then vu
f > va

f ,
and the comparison between vu

g and va
g depends on the value of 1−κ

1−κ
:

(1) if 1−κ
1−κ

< 1−κ
1−κH

2−H−L
H+L

, then va
g < vu

g ,

(2) if 1−κ
1−κ

= 1−κ
1−κH

2−H−L
H+L

, then va
g = vu

g ,

(3) if 1−κ
1−κH

2−H−L
H+L

< 1−κ
1−κ

, then vu
g < va

g .

We interpret Proposition 7 as follows. The condition H + L > 1 ensures that the
information is asymmetrically informative in both scenarios. Thus, d̂1 is good news for f

and bad news for g. The first inequality vu
f > va

f indicates that with the contraction rule,
the DM under-reacts to good news in the ambiguous scenario (scenario 1).

However, contraction rule does not always predict under-reaction to ambiguously bad
news. Bad news not only pushes the DM’s priors towards the bad state but also partially
resolves the payoff-relevant ambiguity. Thus, a DM who exhibits ambiguity aversion
may increase her evaluation of the given act even when bad news is received. In the
proposition, the value of 1−κ

1−κ
captures the degree of the DM’s ex-ante ambiguity on D.

A larger value of 1−κ
1−κ

corresponds to less ex-ante ambiguity. When 1−κ
1−κ

is small (case
(1)), the DM’s ex-ante ambiguity is large, and she benefits more from the resolution of
ambiguity. Consequently, the DM decreases her evaluation of g more in scenario 1 than
in scenario 2, as unambiguous information helps to resolve more of her ex-ante ambiguity.
As the ex-ante ambiguity decreases, the effect of ambiguity resolution is dominated by
the effect of under-reaction to ambiguous information, which leads to vu

g < va
g (case (3)).

The theoretical predictions by the contraction rule are consistent with the experimental
and empirical evidence offered by L24, who finds that subjects exhibit under-reaction
to ambiguous information and pessimism to ambiguously bad news through both lab
experiments and stock price reactions to analyst earnings forecasts. However, as shown by
Proposition 7, our DM exhibits pessimism for ambiguously bad news only in cases where
the ex-ante ambiguity is large, while a certain proportion of subjects in L24’s experiments
exhibit pessimism for such news even when there is no ex-ante ambiguity. Nevertheless,
our results are relevant in the empirical analysis of the stock price reactions by L24, since
in these scenarios, the subjects are shown to exhibit pessimism to ambiguously bad news,
and the ex-ante ambiguity of stock prices is typically large.

25We assume for simplicity that the consequence space is given by X = R, and the DM’s utility
function u : X → R satisfies u(x) = x for all x ∈ X.
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4.3 Contraction Rule as a Tool for Self-Control

In this section, we study optimal information design with the contraction rule in situations
where ambiguous information can be used. The concept of information design was initially
introduced and explored by Kamenica and Gentzkow (2011) in a purely Bayesian setting,
and was investigated by Beauchêne, Li, and Li (2019) in the context where agents are
assumed to be ambiguity averse and update with FB.

To provide a context for our exploration of the optimal information design problem,
consider a scenario in which an individual’s current preference differs from her future
preference. The individual is aware that her future-self will choose from a set of feasible
actions, and she can design an information structure that influences her future-self’s beliefs
in order to align her future choices with her current preference. We demonstrate that if
the individual uses the contraction rule for belief updating, then she can maximally align
her future choices with her current preference through appropriate information structures.

Formally, let R ⊆ ∆(D) be the individual’s prior belief set, where D contains all
payoff-relevant states. WLOG, assume that for every d ∈ D, there exists r ∈ R such that
r(d) > 0.26 An (ambiguous) information structure is a tuple I = (Θ, {χk}n

k=1) where Θ is
a nonempty and finite set of signals, and for every k, χk denotes the distributions over Θ
conditional on every d ∈ D, i.e., for every d ∈ D, χk(·|d) ∈ ∆(Θ). For a given information
structure I = (Θ, {χk}n

k=1), we denote by PI ⊆ ∆(D × Θ) the set of joint distributions
induced by I and the prior set R such that p ∈ PI if and only if there exists r ∈ R and
k ∈ {1, ..., n} such that for all (d, θ) ∈ D × Θ, p(d, θ) = r(d)χk(θ|d).

Let A be a nonempty and finite set of actions from which the individual’s future-self
will make a choice. Let w : A × D → R and v : A × D → R be the individual’s current
and future utility functions, respectively. We denote by A∗

v ⊆ A the set of actions that
are optimal for the future-self under some belief, i.e.,

A∗
v = {a ∈ A : ∃r ∈ ∆(D) such that ∀â ∈ A,

∑
d∈D

r(d)v(a, d) ≥
∑
d∈D

r(d)v(â, d)}.

Note that the future-self will only choose actions from A∗
v even if she has ambiguous beliefs

and adopts maxmin or maxmax criterion.27 This is because if an action a is not in A∗
v,

then by a simple proof similar to that of Lemma 3 in Pearce (1984), we can show that a

is strictly dominated by some σ ∈ ∆(A) with σ(a) = 0 in the sense that for all r ∈ ∆(D),

∑
d∈D

∑
â∈A

r(d)σ(â)v(â, d) >
∑
d∈D

r(d)v(a, d).

26If for some d ∈ D, we have r(d) = 0 for all r ∈ R, then we can rule out the state d and consider the
state space D\{d}.

27I thank Xiaoyu Cheng for pointing this out.
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Let ∆o(D) be the set of distributions over D that assign each state in D a positive
probability. For the set A∗

v, we impose the following generic assumption, which requires
that each a ∈ A∗

v is optimal under some distribution in ∆o(D).

Assumption 1. For all a ∈ A∗
v, there exists r ∈ ∆o(D) such that for all â ∈ A,∑

d∈D r(d)v(a, d) ≥ ∑
d∈D r(d)v(â, d).

For a given information structure I = (Θ, {χk}n
k=1), we say that the function ζ :

Θ → A∗
v is I-implementable if for all θ ∈ Θ, q ∈ Qc(PI , D × {θ}) and a ∈ A, we have∑

d∈D q(d)v(ζ(θ), d) ≥ ∑
d∈D q(d)v(a, d).28 Note that if ζ is I-implementable, then for

every θ ∈ Θ, ζ(θ) is optional for the future-self when θ is observed, regardless of whether
she adopts the maxmin or maxmin criterion. With Assumption 1, the following theorem
demonstrates that if the individual updates with the contraction rule, then she can
manipulate her future choices within A∗

v almost arbitrarily.

Theorem 2. Under Assumption 1, for every function τ : D → A∗
v and λ ∈ (0, 1), there is

an information structure I = (Θ, {χk}n
k=1) and an I-implementable function ζ : Θ → A∗

v

such that for all d ∈ D and k ∈ {1, ..., n}, ∑
θ∈Θ: ζ(θ)=τ(d)

(
χk(θ|d)

)
> λ.

According to Theorem 2, any function τ : D → A∗
v that maps every payoff-relevant

state to an action that the individual desires for her future-self to take under that state
can be almost achieved through an appropriate information structure. We can interpret
this theorem in two ways. First, the individual is aware that her future-self updates beliefs
using the contraction rule. Therefore, the individual can control her future choices by
committing to an ambiguous information structure. Specifically, she can achieve near-
optimal outcomes by setting λ close to 1 and choosing τ as the function that maps each
payoff-relevant state to the w-optimal action in A∗

v under that state. Second, Theorem 2
can be viewed as a desirable normative feature of the contraction rule for individuals who
seek to exercise greater control over their future-selves. These individuals can choose to
update their beliefs using the contraction rule, thereby enabling them to regulate their
future choices through suitable information structures.

In what follows, we provide an example to demonstrate the key idea of Theorem 2.
Our example also serves to demonstrate that FB and ML are incapable of achieving the
same level of near-optimal self-control as the contraction rule.

Example 3. Consider an individual who has just undergone a cholesterol examination
and is expecting the results to be released in two days. The individual is anticipating two
possible results: Either all indexes will be normal (d0) or some index will be abnormal
(d1). Due to the lack of information regarding the likelihood of either outcome, the
individual’s prior belief set is R = ∆(D), where D = {d0, d1}. Upon receiving relevant

28Each q, which should be a distribution over D ×{θ}, is treated as a distribution over D for simplicity.
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information about the examination result, the individual’s future-self can respond to the
information by adjusting her diet plan. Denote by A = {0, 1

3 , 1
2 , 2

3 , 1} the set of diet plans,
where a larger a ∈ A indicates a more healthier diet plan for the next six months. The
individual’s future-self has preference v which satisfies that for all a ∈ A, v(a, d0) = −a2

and v(a, d1) = −(1 − a)2. According to this preference, the future-self is highly responsive
to the examination result: If there is an abnormality, she will choose to eat extremely
healthy (a = 1); otherwise, she will opt for an extremely unhealthy diet (a = 0). However,
the individual desires for her future-self to respond in a more gradual manner to the
examination result, as a sudden and drastic change in dietary habits may have adverse
effects on her health. In particular, she wants her future-self to choose a = 1

3 at d0 and
a = 2

3 at d1.
Our first observation is that if the future-self updates her beliefs using either FB or

ML, then the current-self cannot achieve her desired future choices through the use of
ambiguous information. This is because, with FB or ML, regardless of the information
structure that the individual commits to, the future-self would either maintain her prior
belief set R or update her beliefs to a degenerate belief on either d0 or d1, upon receiving
any signal. In the former case, the future-self would choose a = 1

2 , while in the latter case,
she would choose a = 0 or a = 1.

In contrast, if the individual’s future-self uses the contraction rule, then her current-self
can design the following information structure to regulate future choices. The individual
can send the examination result to 20 friends, each labeled from 1 to 20, without revealing
the result to herself. These friends are divided into two groups: Group 0 consists of
those whose labels are from 1 to 10, and group 1 comprises the rest. There are a total
of 20 signals denoted by {θk}20

k=1. For any friend k0 in group 0 and k1 in group 1 (i.e.,
k0 ≤ 10 and k1 > 10), their signal distributions conditional on the examination results
are presented in Table 3.

Friend k0’s Signal Distributions d0 d1
Probability of Sending θk0 1/5 1/10

Probability of Sending θk′ if k′ ≤ 10 and k′ ̸= k0 4/45 0
Probability of Sending θk′ if k′ > 10 0 9/100

Friend k1’s Signal Distributions d0 d1
Probability of Sending θk1 1/10 1/5

Probability of Sending θk′ if k′ ≤ 10 9/100 0
Probability of Sending θk′ if k′ > 10 and k′ ̸= k1 0 4/45

Table 3: Signal Distributions of Friends from the Two Groups

The individual can require her friends to adopt a secret rule to determine whose signal
is sent to her so that upon receiving the signal, she is completely uncertain about the
sender. Consider the case in which the individual receives signal θk. It follows that if
k ≤ 10, then the maximal probabilities for (d0, θk) and (d1, θk) are given respectively by
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1/5 and 1/10, and if k > 10, they are given respectively by 1/10 and 1/5. With the
contraction rule, the individual will always form a singleton posterior set upon receiving
any signal θk, and she will choose a = 1

3 when k ≤ 10 and a = 2
3 when k > 10. According to

the information structure shown in Table 3, no matter which friend is selected for sending
the signal, the probability for the chosen action to be misaligned with the individual’s
current preference is at most 1/10. For instance, if friend 1 is selected, then the only
misalignment occurs when the true result is d1 and signal θ1 is sent, which happens with
at most 1/10 chance.

Notably, when signal θk is received, the individual will rely on the signal distributions
of friend k to update her beliefs, as friend k’s signal distributions assign the highest
conditional probabilities to signal θk compared to other friends’ signal distributions. While
this feature ensures that the posterior belief of the individual can be easily manipulated, it
also accounts for the misalignment between the chosen action and the individual’s current
preference, as the conditional probabilities of θk of friend k are higher than those of others
and thus are bounded below. One way to decrease the probability of such misalignment
is to lower the conditional probabilities of every signal for every friend, which can be
implemented by increasing the number of friends invited as well as the number of signals.
As the number of friends and signals increases, the probability of misalignment can be
made arbitrarily close to 0.

5 Appendix

Proof of Proposition 1. Consider P ∈ P and E ∈ SP . If µP (E) ≤ 1, then |Qc(P, E)| = 1,
since Qc(P, E) = {µP |E}. If µP (E) > 1, then Qc(P, E) = {Φ(p|E, µP |E)}p∈P . Consider
some s ∈ E and pick p̂ ∈ P such that p̂(s) = µP (s). Since µP (E) > 1, there exists
s∗ ∈ E\{s} such that p̂(s∗) < µP (s∗). Pick p∗ ∈ P such that p∗(s∗) = µP (s∗). It follows
that Φ(p∗|E, µP |E)(s∗) = µP (s∗) > Φ(p̂|E, µP |E)(s∗), and we have Φ(p∗|E, µP |E) ̸=
Φ(p̂|E, µP |E). Therefore, when µP (E) > 1, |Qc(P, E)| ≠ 1.

For the second half of the proposition, assume µP (E) > 1. Since for all s ∈ E and
p ∈ P , p(s) ≤ µP (s), we have for all s ∈ E and p ∈ P , Φ(p|E, µP |E)(s) ≤ µP (s). For each
s ∈ E, there exists p̃ ∈ P such that p̃(s) = µP (s), and we have Φ(p̃|E, µP |E)(s) = µP (s).
Therefore, for all s ∈ E, maxq∈Qc(P,E) q(s) = maxp∈P p(s). That is, µP |E = µQc(P,E).

Proof of Proposition 2. Consider P ∈ P and P -non-null event E. If µP (E) ≤ 1, then
Qc(P, E) = {µP |E}, which is nonempty, convex, and closed. If µP (E) > 1, then
Qc(P, E) = {Φ(p|E, µP |E)}p∈P , which is nonempty. To see that Qc(P, E) is convex,
first note that G = {αp|E + (1 − α)µP |E : α ∈ [0, 1], p ∈ P} is a convex set of measures.
Since Qc(P, E) is the intersection of G with the set of probability measures over E,
Qc(P, E) is convex. To see that Qc(P, E) is closed, consider a sequence of probability
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distributions (qn)+∞
n=1 in Qc(P, E) that converges to some q. For each qn, there exists some

pn ∈ P such that qn = Φ(pn|E, µP |E). Since P is compact, it is without loss of generality
to assume that (pn)+∞

n=1 converges to some p ∈ P . It follows that (Φ(pn|E, µP |E))+∞
n=1—i.e.,

(qn)+∞
n=1—converges to Φ(p|E, µP |E) = q. Thus, Qc(P, E) is closed.
For the second statement of the proposition, assume that p(E) = 1 for all p ∈ P . We

want to show that Qc(P, E) = P . If µP (E) ≤ 1, then P is a singleton, since otherwise
we can find different p, p̂ ∈ P such that 1 < µ{p,p̂}(E) ≤ µP (E), which is a contradiction.
Hence, P = {p∗} for some p∗. It follows that µP = p∗ and Qc(P, E) = {µP |E} = {p∗|E} =
{p∗} = P . If µP (E) > 1, then by equation (2), we have Φ(p|E, µP |E) = p|E = p for all
p ∈ P . Therefore, we conclude that Qc(P, E) = P .

Proof of Proposition 3. We consider three cases. In case (i), µP (E) ≤ 1. We have
Qc(P, E) = {µP |E}. Then Qc(Qc(P, E), F ) = Qc({µP |E}, F ) = {(µP |E)|F} = {µP |F} =
Qc(P, F ). In case (ii), µP (E) > 1 and µP (F ) ≤ 1. By Proposition 1, we have µP |E =
µQc(P,E). It follows that µP |F = µQc(P,E)|F . By a similar argument as case (i), we have
Qc(Qc(P, E), F ) = Qc(P, F ). In case (iii), µP (E) > 1 and µP (F ) > 1. We need the
following claim, of which the proof is simple algebra and thus omitted.

Claim 1. For all π, π′ ∈ M(S) and α ∈ (0, 1] such that π(S) ≤ 1, π′(S) > 1, and
(απ + (1 − α)π′)(S) ≤ 1, we have Φ(π, π′) = Φ(απ + (1 − α)π′, π′).

Back to the proof for case (iii), since µP |F = µQc(P,E)|F , we have Qc(Qc(P, E), F ) =
{Φ(q|F, µP |F )}q∈Qc(P,E) = {Φ(Φ(p|E, µP |E)|F, µP |F )}p∈P . Note that for each p ∈ P ,
Φ(p|E, µP |E) = αp|E + (1 − α)µP |E for some α ∈ (0, 1]. Hence, Φ(p|E, µP |E)|F =
αp|F + (1 − α)µP |F . By Claim 1, for every p ∈ P , we have Φ(Φ(p|E, µP |E)|F, µP |F ) =
Φ(p|F, µP |F ), and we are done.

Proofs of Proposition 4 and Theorem 1. Given the conditions we impose on R, there
exists a non-constant and affine utility function u : X → R such that (i) for every
≿∈ R, there is P ∈ P such that (u, P ) represents ≿, and (ii) for every P ∈ P, there
is ≿∈ R such that (u, P ) represents ≿. Throughout the proof, fix the utility function
u and say that P represents ≿ if (u, P ) represents ≿. We use Π to denote the partition
{{s} : s ∈ E}∪{S\E} whenever E is specified. For all f ∈ F , x ∈ X, and p ∈ ∆(S), define
u(fEx; pΠ) = ∑

s∈E p(s)u(f(s)) + p(S\E)u(x), and for all P ∈ P, define u↓(fEx; PΠ) =
minp∈P u(fEx; pΠ). We have u(fEx; p) = u(fEx; pΠ) and u↓(fEx; PΠ) = u↓(fEx; P ).
The first lemma is trivial, and thus we omit its proof.

Lemma 1. For all ≿∈ R, P ∈ P, and partition Ω of S, if P represents ≿, then (i)
SP = S(≿), (ii) ≿ is Ω-unambiguous if and only if PΩ is a singleton, and (iii) ≿ is
unambiguous if and only if P is a singleton.

Lemma 2. For all P 1, P 2 ∈ P and event E with µP 1(E) > 1 and µP 2(E) > 1, if
Qc(P 1, E) = Qc(P 2, E), then Qc(co(P 1 ∪ P 2), E) = Qc(P 1, E).
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Proof. Since µP 1(E) > 1, µP 2(E) > 1 and Qc(P 1, E) = Qc(P 2, E), by Proposition 1, we
have µP 1 |E = µQc(P 1,E) = µQc(P 2,E) = µP 2|E. Therefore, µP 1|E = µP 2|E = µco(P 1∪P 2)|E,
and it follows that Qc(P 1, E) = {Φ(p|E, µP 1 |E)}p∈P 1 ⊆ {Φ(q|E, µP 1|E)}q∈co(P 1∪P 2) =
Qc(co(P 1 ∪ P 2), E). It remains to show Qc(co(P 1 ∪ P 2), E) ⊆ Qc(P 1, E). Note that
measures over E can be regarded as elements in RE. Define G = {αq + (1 − α)µP 1|E :
α ∈ [0, +∞), q ∈ Qc(P 1, E)} ⊆ RE. Since Qc(P 1, E) is convex (by Proposition 2), G is
also convex. By the construction of G, we have P 1|E ⊆ G and P 2|E ⊆ G, and thus
co(P 1|E ∪ P 2|E) ⊆ G. It then follows that Qc(co(P 1 ∪ P 2), E) ⊆ Qc(P 1, E).

Lemma 3. For all {≿k}3
k=1 ⊆ R, {P k}3

k=1 ⊆ P, and E ∈ ∩3
k=1S(≿k) such that P k

represents ≿k for all k ∈ {1, 2, 3}, ≿3 is E-aligned with (≿1,≿2) if and only if (i)
P 3

Π ⊆ co(P 1
Π ∪ P 2

Π), and (ii) for every p ∈ P 1 and q ∈ P 2, there exists α ∈ [0, 1] such that
αpΠ + (1 − α)qΠ ∈ P 3

Π.

Proof. For sufficiency, consider arbitrary f ∈ F and x, y ∈ X. If fEx ≿1 y and
fEx ≿2 y, then we have u↓(fEx; P 1

Π) ≥ u(y) and u↓(fEx; P 2
Π) ≥ u(y). It follows that

u↓(fEx; co(P 1
Π ∪ P 2

Π)) ≥ u(y). By condition (i), we have u↓(fEx; P 3
Π) ≥ u↓(fEx; co(P 1

Π ∪
P 2

Π)) ≥ u(y). That is, fEx ≿3 y. If y ≿1 fEx and y ≿2 fEx, then there exists
p ∈ P 1 and q ∈ P 2 such that u(y) ≥ u(fEx; pΠ) and u(y) ≥ u(fEx; qΠ). By condition
(ii), there exists α ∈ [0, 1] such that rΠ = αpΠ + (1 − α)qΠ ∈ P 3

Π. Thus, we have
u↓(fEx; P 3

Π) ≤ u(fEx; rΠ) ≤ u(y). That is, y ≿3 fEx.
For necessity, we first show condition (i). Suppose to the contrary that there exists p ∈

P 3 such that pΠ /∈ co(P 1
Π ∪P 2

Π). By the separating hyperplane theorem (SHT), we can find
f ∈ F and x, y ∈ X such that u(fEx; pΠ) < u(y) < u↓(fEx; co(P 1

Π ∪ P 2
Π)). It follows that

u↓(fEx; P 3
Π) < u(y) < u↓(fEx; co(P 1

Π∪P 2
Π)). That is, fEx ≻1 y, fEx ≻2 y and y ≻3 fEx,

contradicting with the E-alignment relation. To see condition (ii), suppose to the contrary
that there exists p ∈ P 1 and q ∈ P 2 such that co({pΠ, qΠ})∩P 3

Π = ∅. By SHT, there exists
f ∈ F and x, y ∈ X such that u↓(fEx; P 3

Π) > u(y) > max{u(fEx; pΠ), u(fEx; qΠ)}. It
then follows that fEx ≻3 y, y ≻1 fEx and y ≻2 fEx, which is a contradiction.

For all {P k}3
k=1 ⊆ P and event E, if conditions (i) and (ii) in the statement of Lemma

3 hold, then we say that P 3 is E-aligned with (P 1, P 2).

Lemma 4. For all {P k}3
k=1 ⊆ P and E ∈ ∩3

k=1SP k , if P 3 is E-aligned with (P 1, P 2)
and µP k(E) > 1 for all k ∈ {1, 2}, then Qc(P 1, E) = Qc(P 2, E) implies Qc(P 1, E) =
Qc(P 2, E) = Qc(P 3, E).

Proof. We first show µP 1|E = µP 2|E = µP 3|E. Since µP 1(E) > 1 and µP 2(E) > 1, by
Proposition 1, Qc(P 1, E) = Qc(P 2, E) implies µP 1|E = µP 2|E. Since P 3 is E-aligned
with (P 1, P 2), P 3

Π ⊆ co(P 1
Π ∪ P 2

Π). Thus for every s ∈ E, we have µP 3(s) ≤ µP 1(s). For
each s ∈ E, there exists p1 ∈ P 1 and p2 ∈ P 2 such that p1(s) = p2(s) = µP 1(s). By the
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E-alignment relation, there exists α ∈ [0, 1] such that αp1
Π + (1 − α)p2

Π ∈ P 3
Π, indicating

that µP 3(s) ≥ µP 1(s). Thus µP 1|E = µP 3|E.
Since P 3

Π ⊆ co(P 1
Π ∪ P 2

Π), by Lemma 2 and µP 1 |E = µP 3|E, we have Qc(P 3, E) ⊆
Qc(co(P 1 ∪ P 2), E) = Qc(P 1, E). It remains to show Qc(P 1, E) ⊆ Qc(P 3, E). For every
q ∈ Qc(P 1, E) = Qc(P 2, E), there exists p1 ∈ P 1 and p2 ∈ P 2 such that Φ(p1|E, µP 1 |E) =
Φ(p2|E, µP 2|E) = q. By the E-alignment relation, there exists α ∈ [0, 1] such that
αp1

Π + (1 − α)p2
Π ∈ P 3

Π. Thus q = Φ(αp1|E + (1 − α)p2|E, µP 1 |E) = Φ(αp1|E + (1 −
α)p2|E, µP 3|E) ∈ Qc(P 3, E). We are done.

Lemma 5. For all ≿1,≿2∈ R, P 1, P 2 ∈ P, E ∈ S(≿1) ∩ S(≿2) and λ ∈ [1, +∞) such
that P 1 and P 2 represent ≿1 and ≿2 respectively, ≿1(λ,E)

⇝ ≿2 if and only if λP 1|E = P 2|E.

Proof. For the sufficiency part, consider arbitrary f ∈ F and x ∈ X such that fEx ∼1 y.
We have

u(y) = u↓(fEx; P 1
Π) = min

p∈P 1

( ∑
s∈E

p(s)u(f(s)) + (1 − p(E))u(x)
)

= min
p∈P 1

( ∑
s∈E

λp(s)( 1
λ

u(f(s)) + (1 − 1
λ

)u(x)) + (1 − λp(E))u(x)
)

= min
q∈P 2

( ∑
s∈E

q(s)( 1
λ

u(f(s)) + (1 − 1
λ

)u(x)) + (1 − q(E))u(x)
)

= u↓( 1
λ

fEx + (1 − 1
λ

)x; P 2
Π)

It follows that 1
λ
fEx + (1 − 1

λ
)x ∼2 y, and thus ≿1(λ,E)

⇝ ≿2. The necessity part can be
implied by the uniqueness of the maxmin representation.

Lemma 6. For all {P k}4
k=1 ⊆ P, event E and λ ∈ [1, +∞) such that µP k(E) > 1 for

all k ∈ {1, 2, 3, 4}, if P 1|E = λP 3|E and P 2|E = λP 4|E, then Qc(P 3, E) = Qc(P 4, E)
implies Qc(P 1, E) = Qc(P 2, E).

Proof. Since Qc(P 3, E) = Qc(P 4, E), µP 3(E) > 1 and µP 4(E) > 1, we have µP 3|E =
µP 4|E. Since P 1 = λP 3|E and P 2 = λP 4|E, we have µP 1|E = µP 2|E = λµP 3|E. For
every p1 ∈ P 1, there exists p2 ∈ P 2, p3 ∈ P 3 and p4 ∈ P 4 such that λp3|E = p1|E,
λp4|E = p2|E and Φ(p3|E, µP 3|E) = Φ(p4|E, µP 4|E). Since µP 3|E = µP 4|E, we have
Φ(λp3|E, λµP 3|E) = Φ(λp4|E, λµP 4|E), i.e., Φ(p1|E, µP 1|E) = Φ(p2|E, µP 2 |E). Thus,
Qc(P 1, E) ⊆ Qc(P 2, E). By a similar argument, we have Qc(P 2, E) ⊆ Qc(P 1, E), and
thus Qc(P 1, E) = Qc(P 2, E).

Lemma 7. For all ≿∈ R, sequence (≿n)+∞
n=1 in R, P ∈ P, sequence (P n)+∞

n=1 in P,
and event E such that P represents ≿ and P n represents ≿n for all n ∈ N+, (≿n)+∞

n=1

33



converges to ≿ on E if and only if (P n
Π)+∞

n=1 converges to PΠ.29

Proof. Note that the function u↓(fEx; PΠ) is continuous with respect to PΠ. Thus,
if (P n

Π)+∞
n=1 converges to PΠ, then for all f ∈ F and x ∈ X, lim

n→+∞
u↓(fEx; P n) =

lim
n→+∞

u↓(fEx; P n
Π) = u↓(fEx; PΠ) = u↓(fEx; P ). Thus, for all y ∈ X, fEx ≿n y for all

n ∈ N+ implies fEx ≿ y, and y ≿n fEx for all n ∈ N+ implies y ≿ fEx. That is, (≿n)+∞
n=1

converges to ≿ on E. For the inverse direction, suppose to the contrary that (P n
Π)+∞

n=1 does
not converge to PΠ, then there is a subsequence (P nk

Π )+∞
k=1 that converges to P̄Π ̸= PΠ. It

follows that there exists f ∈ F and x, y ∈ X such that u↓(fEx; PΠ) > u(y) > u↓(fEx; P̄Π),
which is a contradiction.

Lemma 8. For all P ∈ P, sequence (P n)+∞
n=1 in P, and E ∈ SP ∩ (∩+∞

n=1SP n), if (P n
Π)+∞

n=1

converges to PΠ, then (Qc(P n, E))+∞
n=1 converges to Qc(P, E).

Proof. We consider three cases. In case 1, µP (E) < 1. Since (P n
Π)+∞

n=1 converges to PΠ,
(P n|E)+∞

n=1 converges to P |E. Thus, (µP n|E)+∞
n=1 converges to µP |E. WLOG, we can assume

that for every n ∈ N+, µP n(E) < 1, and we are done. In case 2, µP (E) > 1. WLOG, we can
assume that for every n ∈ N+, µP n(E) > 1. In this case, (P n|E ∪ {µP n|E})+∞

n=1 converges
to P |E ∪{µP |E}. It follows that (co(P n|E ∪{µP n|E}))∞

n=1 converges to co(P |E ∪{µP |E}).
Let G denote the set of probability distributions over E, and we have that (co(P n|E ∪
{µP n|E})∩G)+∞

n=1 (i.e., (Qc(P n, E))+∞
n=1) converges to co(P |E∪{µP |E})∩G (i.e., Qc(P, E)).

In case 3, µP (E) = 1. We divide the sequence (P n)+∞
n=1 to two subsequences (P nk)+∞

k=1 and
(P mk)+∞

k=1 such that for all k ∈ N+, µP nk (E) ≤ 1 < µP mk (E). It follows from the previous
arguments that (µP nk |E)+∞

k=1 converges to µP |E and (co(P mk |E ∪ {µP mk |E}) ∩ G)+∞
k=1

converges to co(P |E∪{µP |E})∩G. Note that Qc(P, E) = {µP |E} = co(P |E∪{µP |E})∩G.
Therefore, both sequences converge to Qc(P, E) in this case.

Lemma 9. The contraction rule satisfies Alignment Consistency.

Proof. Consider arbitrary {≿k}3
k=1 ⊆ R and event E that satisfy all the primitive

conditions stated in the axiom. For every k ∈ {1, 2, 3}, let P k represents ≿k. Since
≿3 is E-aligned with (≿1,≿2), by Lemma 3, P 3 is E-aligned with (P 1, P 2). Since
for every k ∈ {1, 2}, ≿k

E is ambiguous, by Lemma 1, we have for every k ∈ {1, 2},
µP k(E) > 1. Since ≿1

E=≿2
E, we have Qc(P 1, E) = Qc(P 2, E). By Lemma 4, we have

Qc(P 1, E) = Qc(P 2, E) = Q3(P 3, E), which implies ≿1
E=≿2

E=≿3
E.

Lemma 10. The contraction rule satisfies Sensitivity Congruence.
29For all P ∈ P and event E, PΠ can be viewed as a subset of R|E|+1. Let d be the Euclidean

metric on R|E|+1. The metric we use to measure the distance between two sets is the Hausdorff metric,
denoted by dh, which is defined such that for any two closed sets A and B in R|E|+1, dh(A, B) =
max{maxa∈A minb∈B d(a, b), maxa′∈B minb′∈A d(a′, b′)}.
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Proof. Consider arbitrary {≿k}4
k=1 ⊆ R, event E, and λ ∈ [1, +∞) that satisfy all the

primitive conditions stated in the axiom. For every k ∈ {1, 2, 3, 4}, let P k represent ≿k.
Since ≿3(λ,E)

⇝ ≿1 and ≿4(λ,E)
⇝ ≿2, by Lemma 5, we have P 1|E = λP 3|E and P 2|E = λP 4|E.

Since ≿k
E is ambiguous, by Lemma 1, we have µP k(E) > 1 for every k. Since Qc(P 3, E) =

Qc(P 4, E) (which is implied by ≿3
E=≿4

E), by Lemma 6, we have Qc(P 1, E) = Qc(P 2, E),
i.e., ≿1

E=≿2
E.

Lemma 11. The contraction rule satisfies Sensitivity Independence.

Proof. Consider arbitrary ≿1,≿2∈ R, event E, and λ ∈ [1, +∞) that satisfy all the
primitive conditions stated in the axiom. Let P 1 and P 2 represent the two preferences
respectively. Since ≿1(λ,E)

⇝ ≿2, by Lemma 5, we have P 2|E = λP 1|E. It follows that
λµP 1 |E = µP 2|E, which implies µP 1|E = µP 2|E. Since both ≿1

E and ≿2
E are unambiguous,

they are represented by {µP 1 |E} and {µP 2|E} respectively. Therefore, ≿1
E=≿2

E.

Lemma 12. The contraction rule satisfies Non-Ambiguity Persistence

Proof. Consider arbitrary ≿∈ R, partition Ω = {Si}n
i=1 and event E that satisfy all

the conditions stated in the axiom. Let P represent ≿. Since ≿ is Ω-unambiguous, by
Lemma 1, PΩ is a singleton. Thus, µP (E) ≤ ∑n

i=1 (maxp∈P p(Si)) = 1. It follows that
Qc(P, E) = {µP |E}, i.e., ≿E is unambiguous.

Lemma 13. The contraction rule satisfies Increased Sensitivity after Updating.

Proof. Consider arbitrary preference ≿∈ R, event E, s ∈ E, x, y ∈ X, and f, g ∈ F that
satisfy all the primitive conditions stated in the axiom. Let P represent ≿ and p∗ = µP |E.
Since ≿E is unambiguous, {p∗} represents ≿E. Since f ∼ x, f ∼E x, and g ∼ y, to
show g ≿E y, it suffices to show that u(g; p∗) − u(f ; p∗) ≥ u↓(g; P ) − u↓(f ; P ). Since
f

S\s= g, we have u(g; p∗) − u(f ; p∗) = p∗(s)[u(g(s)) − u(f(s))] ≥ µP (s)[u(g(s)) − u(f(s))] ≥
p(s)[u(g(s))−u(f(s))] ≥ u↓(g; P )−u↓(f ; P ), where p ∈ P satisfies u↓(f ; P ) = u(f ; p).

Lemma 14. The contraction rule satisfies Continuity.

Proof. The lemma follows directly from Lemmas 7 and 8.

Definition 7. An updating rule Γ satisfies Independence of Irrelevant States (IIS) if for
all ≿1,≿2 ∈ R and E ∈ S(≿1) ∩ S(≿2), if ≿1(1,E)

⇝ ≿2, then ≿1
E=≿2

E.

Lemma 15. Consider an updating rule that satisfies IIS. With this rule, for all ≿∈ R,
P ∈ P, and event E such that P represents ≿ and µP (E) > 1, there exists ≿∗∈ R that
satisfies ≿(1,E)

⇝ ≿∗ and violates updating monotonicity on E.
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Proof. Since E is finite and S is infinite, there exists finite Ê ⊆ S that satisfies |E| = |Ê|
and E ∩ Ê = ∅. Consider an arbitrary bijection τ : E → Ê and denote ŝ = τ(s) for every
s ∈ E. For every p ∈ P , define p̂ such that for all s ∈ E, p̂(s) = p(s), and for all ŝ ∈ Ê,
p̂(ŝ) = Φ(p|E, µP |E)(s) − p(s). Each p̂ is well-defined since Φ(p|E, µP |E)(s) ≥ p(s) for
all s ∈ E. It follows that PΠ = P̂Π and for every p̂ ∈ P̂ , p̂(E ∪ Ê) = 1. Since P̂ is closed,
we have co(P̂ ) ∈ P. Let ≿∗ ∈ R be represented by co(P̂ ). Since P̂Π = PΠ, we have
≿

(1,E)
⇝ ≿∗. Since Γ satisfies IIS, ≿ and ≿∗ are updated to the same preference, denoted

by ≿E, when E occurs. Let ≿E be represented by Q ∈ P. It remains to show that ≿∗

violates updating monotonicity on E.
Suppose to the contrary that ≿∗ satisfies updating monotonicity on E. Fix some

s ∈ E. Consider act f such that f(s) = x, f(ŝ) = y, and for all s̃ ∈ S\{s, ŝ}, f(s̃) = x,
where u(y) > u(x). WLOG, assume u(x) = 0 and u(y) = 1. Clearly, f ∼E x, since
f equals x on E. We argue that f ∼∗ x. Note that u↓(f ; co(P̂ )) = minp̂∈P̂ p̂(ŝ) = 0,

where the second equality holds since there exists p ∈ P such that p(s) = µP (s), implying
p̂(ŝ) = Φ(p|E, µP |E)(s) − p(s) = 0. Define P̂ ∗ ⊆ P̂ such that p̂ ∈ P̂ ∗ if and only if
p(s) = µP (s), and we have arg minp̃∈co(P̂ ) p̃(ŝ) = co(P̂ ∗). For every ϵ ∈ (0, 1), define act f ϵ

such that f ϵ(s) = ϵy + (1 − ϵ)x, f ϵ(ŝ) = y, and for all s̃ ∈ S\{s, ŝ}, f ϵ(s̃) = x. It follows
that when ϵ is sufficiently small,

u↓(f ϵ; co(P̂ )) − u↓(f ; co(P̂ )) = min
p̃∈co(P̂ ∗)

(u(f ϵ; p̃) − u(f ; p̃)) + o(ϵ),

where o(ϵ) denotes an infinitesimal term of ϵ. The equation holds since the maxmin
representation is essentially a concave function over (u(X))m (where m is the cardinality
of the support of co(P̂ )), and co(P̂ ∗) is the set of supergradients of the function at f .
Since for each p̃ ∈ co(P̂ ∗), p̃(s) = µP (s), we can re-write the above equation as

u↓(f ϵ; co(P̂ )) − u↓(f ; co(P̂ )) = µP (s)ϵ + o(ϵ).

Hence, for any k < µP (s), we can find small enough ϵ such that u↓(f ϵ; co(P̂ )) −
u↓(f ; co(P̂ )) > kϵ. Since ≿E is represented by Q, which is supported in E, we have
u↓(f ϵ; Q) − u↓(f ; Q) = minq∈Q q(s)ϵ. Since f ∼∗ x and f ∼E x, to ensure that ≿∗ satisfies
updating monotonicity on E, we need to ensure that for all ϵ close to 0 and z ∈ X, f ϵ ∼∗ z

implies f ϵ ≿E z, i.e., for all k < µP (s), minq∈Q q(s)ϵ > kϵ. Thus, minq∈Q q(s) ≥ µP (s).
Similarly, we can show that for all s̃ ∈ E, minq∈Q q(s̃) ≥ µP (s̃), which is impossible since
µP (E) > 1.

Lemma 16. Consider an updating rule that satisfies IIS and Non-Ambiguity Persistence.
With this rule, for all ≿∈ R, P ∈ P, and event E such that P represents ≿, if µP (E) ≤ 1,
then ≿E is unambiguous.
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Proof. Since µP (E) ≤ 1, there exists p∗ ∈ ∆(S) such that p∗(E) = 1 and for every s ∈ E,
p∗(s) ≥ µP (s). Fix such p∗. Since E is finite and S is infinite, there exists finite Ê ⊆ S

such that |E| = |Ê| and E ∩ Ê = ∅. Consider an arbitrary bijection τ : E → Ê and
denote ŝ = τ(s) for each s ∈ E. For each p ∈ P , define p̂ ∈ ∆(S) such that for every
s ∈ E, p̂(s) = p(s) and p̂(ŝ) = p∗(s) − p(s). Let P̂ = {p̂}p∈P , and we have P̂ ∈ P and
P̂Π = PΠ. Let ≿∗∈ R be represented by P̂ . For every s ∈ E and every p̂ ∈ P̂ , we have
p̂({s, ŝ}) = p∗(s). Thus, ≿∗ is Ω-unambiguous, where Ω = {{s, ŝ}}s∈E ∪ {S\(∪s∈E{s, ŝ})}.
By Non-Ambiguity Persistence, ≿∗

E is unambiguous, and so is ≿E by IIS.

Lemma 17. Consider an updating rule that satisfies Sensitivity Independence, Non-
Ambiguity Persistence, and Increased Sensitivity after Updating. With this rule, for all
≿∈ R, E ∈ S(≿), and P ∈ P such that P represents ≿, µP (E) ≤ 1 is sufficient and
necessary for ≿E to be unambiguous.

Proof. By a similar argument to the proof of Lemma 16, Sensitivity Independence and
Non-Ambiguity Persistence ensure that if µP (E) ≤ 1, then ≿E is unambiguous. It
remains to prove that if µP (E) > 1, then ≿E is ambiguous. Suppose to the contrary that
µP (E) > 1, and ≿E is unambiguous. By Sensitivity Independence, for all ≿∗∈ R with
≿

(1,E)
⇝ ≿∗, we have ≿∗

E=≿E, and thus ≿∗
E is unambiguous. This contradicts with Increased

Sensitivity after Updating by the proof of Lemma 15.

Lemma 18. Consider an updating rule that satisfies Sensitivity Independence, Non-
Ambiguity Persistence, and Increased Sensitivity after Updating. With this rule, for all
≿∈ R, E ∈ S(≿), and P ∈ P such that P represents ≿, if µP (E) ≤ 1, then ≿E is
represented by {µP |E}.

Proof. Let λ = 1
µP (E) . Since µP (E) ≤ 1, we have λ ≥ 1. Let Ê ⊆ S be such that |E| = |Ê|

and E ∩ Ê = ∅. Consider an arbitrary bijection τ : E → Ê and let ŝ = τ(s) for every
s ∈ E. For every p ∈ P , define p̂ ∈ ∆(S) such that for every s ∈ E, p̂(s) = λp(s),
and for every ŝ ∈ Ê, p̂(ŝ) = λµP (s) − λp(s). Let P̂ = {p̂}p∈P , and we have P̂ ∈ P

and P̂ |E = λP |E. Let ≿∗ ∈ R be represented by P̂ , and it follows from Lemma 5 that
≿

(λ,E)
⇝ ≿∗. Since µP (E) ≤ µP̂ (E) = 1, by Lemma 17, both ≿E and ≿∗

E are unambiguous.
By Sensitivity Independence, we have ≿E=≿∗

E . Let ≿∗
E be represented by {q} for some

q ∈ ∆(S).
It remains to show that q = µP |E. Fix some s ∈ E. Consider acts f and g such that

f(s) = x, f(ŝ) = y, g(s) = 1
2x + 1

2y, g(ŝ) = y, and for all s̃ ∈ S\{s, ŝ}, f(s̃) = g(s̃) = x,
where u(y) > u(x). We can assume WLOG that u(x) = 0 and u(y) = 1. Since for all
p̂ ∈ P̂ , p̂({s, ŝ}) = λµP (s), it follows that

u↓(g; P̂ ) = min
p̂∈P̂

(1
2 p̂(s) + p̂(ŝ)

)
= min

p̂∈P̂

(1
2 p̂(s) + λµP (s) − p̂(s)

)
= 1

2λµP (s).
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Similarly, u↓(f ; P̂ ) = 0. Also, we have u(f ; q) = 0 and u(g; q) = 1
2q(s). Since ≿∗

E is
unambiguous, Increased Sensitivity after Updating implies u(g; q) ≥ u↓(g; P̂ ). That is,
λµP (s) ≤ q(s). By a similar argument, for every s̃ ∈ E, we have λµP (s̃) ≤ q(s̃). Since
λµP |E = µP |E, we conclude that q = µP |E.

Lemma 19. Consider an updating rule that satisfies Axioms 1-6. With this rule, for
all ≿∈ R, E ∈ S(≿), and P ∈ P such that P represents ≿, if µP (E) > 1, then ≿E is
represented by {Φ(p|E, µP |E)}p∈P .

Proof. Let λ = µP (E) > 1. Consider a sequence of real numbers (λn)+∞
n=1 such that

(λn)+∞
n=1 converges to λ, and for all n ∈ N+, 1 < λn < λ. For every n ∈ N+, let Pn ∈ P be

such that λnPn|E = P |E, ≿n ∈ R be represented by Pn, Qn ∈ P represent ≿n
E, Rn ∈ P

be such that Rn = {p ∈ co(Pn ∪ Qn) : p(E) = 1
λn

}, ⊵n ∈ R be represented by Rn, and
⊵∗,n ∈ R be represented by λnRn|E.

By our construction, for all n ∈ N+, we have µPn(E) > 1. By Lemma 17, ≿n
E is

ambiguous, and thus µQn(E) > 1. By our construction, Rn is E-aligned with (Pn, Qn). It
follows from Lemma 3 and Alignment Consistency that ≿n

E=⊵n
E. By Lemma 5, we have

≿n(λn,E)
⇝ ≿ and ⊵n(λn,E)

⇝ ⊵∗,n. Thus, by Sensitivity Congruence, we have ≿E=⊵∗,n
E .

Let P ∗ ∈ P satisfy λP ∗|E = P |E, and ≿∗ ∈ R be represented by P ∗. Since µP ∗(E) =
1, by Lemma 18, ≿∗

E is represented by {q}, where q = µP ∗|E. Since (Pn|E)+∞
n=1 converges to

P ∗|E, by Lemma 7, (≿n)+∞
n=1 converges to ≿∗ on E. By Continuity, (≿n

E)+∞
n=1 converges to

≿∗
E on E. Therefore, by Lemma 7, (Qn)+∞

n=1 converges to {q}. It follows that (λnRn|E)+∞
n=1

converges to {Φ(p|E, µP |E)}p∈P . Let ⊵∗∈ R be represented by {Φ(p|E, µP |E)}p∈P . By
Lemma 7, (⊵∗,n)+∞

n=1 converges to ⊵∗ on E. Since S\E is ⊵∗-null, we have ⊵∗
E=⊵∗. By

Continuity, (⊵∗,n
E )+∞

n=1 converges to ⊵∗ on E. Since for all n ∈ N+, ≿∗,n
E =≿E, we conclude

that ≿E=⊵∗.

The necessity of Theorem 1 is demonstrated by Lemmas 9-13. Proposition 4 can be
implied by Lemmas 15 and 16. The sufficiency of Theorem 1 is shown by Lemmas 18 and
19.

Proof of Proposition 5. Let D = {d1, d2}. The DM’s prior beliefs over D can be fully
captured by [1−maxp∈P p({d2}×Θ), maxp∈P p({d1}×Θ)]: The probability of d1 is at least
1−maxp∈P p({d2}×Θ) and at most maxp∈P p({d1}×Θ). Given signal θ, there are two cases
to be considered. First, the DM’s contraction posterior set is a singleton. Clearly, there is
no dilation in this case. Second, the DM’s contraction posterior set is not a singleton. In
this case, the DM’s ex-post beliefs over D are given by [1−maxp∈P p(d2, θ), maxp∈P p(d1, θ)].
Clearly, this set does not strictly contain the prior one.

Proof of Proposition 6. The first case is trivial since when the DM has no prior ambiguity
over D, her contraction posterior set is a singleton. Consider the second case of the
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proposition. We consider the non-trivial case in which D and Θ are not singleton sets.
The primitive conditions imply that maxp∈P p({d} × Θ) > maxp∈P p(d, θ) for all d ∈ D

and θ ∈ Θ. Thus, maxp∈P p({d} × Θ) > µP (d, θ). When θ is observed, if the contraction
posterior set is a singleton, then there is no dilation. If not, maxp∈P p({d} × Θ) > µP (d, θ)
implies that the ex-ante maximal probability of d is strictly higher than the ex-post one.
Thus, the ex-post set of beliefs over D does not contain the ex-ante one.

Proof of Proposition 7. The DM’s evaluations of f and g are given by the minimal
probabilities of states d1 and d2, respectively. First, consider scenario 1. The maximal
probability of (d1, d̂1) is κH, and that of (d2, d̂1) is (1 − κ)(1 − L). The values of
va

f and va
g depend on whether d̂1 resolves the DM’s ambiguity or not, i.e., whether

κH + (1 − κ)(1 − L) is less than one or not. If κH + (1 − κ)(1 − L) ≤ 1, then we have
va

f = κH
κH+(1−κ)(1−L) and va

g = (1−κ)(1−L)
κH+(1−κ)(1−L) . If κH + (1 − κ)(1 − L) > 1, then we have

va
f = 1 − (1 − κ)(1 − L) and va

g = 1 − κH. Next, consider scenario 2. With signal d̂1, the
maximal probability of (d1, d̂1) is κ(H + L)/2, and that of (d2, d̂1) is (1 − κ)(2 − H − L)/2.
Since κ(H + L)/2 + (1 − κ)(2 − H − L)/2 ≤ 1, the realization of d̂1 resolves the
ambiguity. Thus, we have vu

f = κ(H+L)
κ(H+L)+(1−κ)(2−H−L) and vu

g = (1−κ)(2−H−L)
κ(H+L)+(1−κ)(2−H−L) .

Since H + L > 1, we have H+L
2−H−L

> H
1−L

. Thus, when κH + (1 − κ)(1 − L) ≤ 1,
va

f = κH
κH+(1−κ)(1−L) < κ(H+L)

κ(H+L)+(1−κ)(2−H−L) = vu
f . When κH + (1 − κ)(1 − L) > 1, we

have va
f = 1 − (1 − κ)(1 − L) ≤ κH

κH+(1−κ)(1−L) < κ(H+L)
κ(H+L)+(1−κ)(2−H−L) = vu

f , where the first
inequality holds since va

f

1−va
f

= 1−(1−κ)(1−L)
(1−κ)(1−L) ≤ κH

(1−κ)(1−L) . The comparison between va
g and

vu
g follows from similar calculations.

Proof of Theorem 2. Consider any τ : D → A∗
v and λ ∈ (0, 1). For every d ∈ D, let

m(d) = maxr∈R r(d). By Assumption 1, there exists rd ∈ ∆o(S) such that τ(d) is one of
the v-optimal actions under rd, i.e., for all a ∈ A, ∑

d̂∈D rd(d̂)v(τ(d), d̂) ≥ ∑
d̂∈D rd(d̂)v(a, d̂).

Let Θ = {θd,t}(d,t)∈D×N , where N is an index set and |N | = n ∈ N+ with n to be specified
later. Define an information structure I =

(
Θ, {χd,t}(d,t)∈D×N

)
as follows: For every

(d∗, t∗) ∈ D × N , let χd∗,t∗ be such that
(i) for all d, d̂ ∈ D, χd∗,t∗(θd∗,t∗|d) < 1 − λ and

m(d)χd∗,t∗(θd∗,t∗|d)
m(d̂)χd∗,t∗(θd∗,t∗|d̂)

= rd∗(d)
rd∗(d̂)

,

(ii) for all d̂ ∈ D and (d, t) ∈ D × N with (d, t) ̸= (d∗, t∗),

χd∗,t∗(θd,t|d̂) = 0, if d ̸= d̂;

χd∗,t∗(θd,t|d̂) = 1 − χd∗,t∗(θd∗,t∗|d̂)
n − 1 , if d = d̂ = d∗,

χd∗,t∗(θd,t|d̂) = 1 − χd∗,t∗(θd∗,t∗|d̂)
n

, if d = d̂ ̸= d∗.

39



Given (i) and (ii), we can additionally require χd∗,t∗(·|·) to satisfy

(iii)
∑
d∈D

χd∗,t∗(θd∗,t∗|d) = 1 − λ

2 .

If conditions (i)-(iii) hold for all (d∗, t∗) ∈ D × N and n becomes large enough, then
for all d, d′, d̂ ∈ D and t, t′ ∈ N with (d, t) ̸= (d′, t′), we have χd,t(θd,t|d̂) > χd′,t′(θd,t|d̂).
Therefore, when signal θd,t is realized, by condition (iii), the contraction posterior set of
the DM is a singleton and determined by the normalization of (m(d̂)χd,t(θd,t|d̂))d̂∈D, and
by condition (i), the contraction posterior set is {rd}. It then follows that the function
ζ : Θ → A∗

v is I-implementable, where ζ satisfies that for all θd,t ∈ Θ, ζ(θd,t) = τ(d). The
theorem is then shown by the fact that for every d, d̂ ∈ D and t ∈ N ,

∑
(d′,t′)∈D×N : ζ(θd′,t′ )̸=τ(d̂)

χd,t(θd′,t′ |d̂) ≤
∑

(d′,t′)∈D×N :d′ ̸=d̂

χd,t(θd′,t′|d̂) ≤ χd,t(θd,t|d̂) < 1 − λ.
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