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Abstract

Two alternatives are independent if they never induce menu effects

on each other. We propose a condition, Comparative Richness, which

postulates that for every menu and every submenu of it, there is an

alternative that is equally desirable as the submenu and independent of

each alternative in the menu. We show that under Comparative Richness,

(i) some axioms necessary for rationality become sufficient; (ii) several

classic axioms without clear implications now characterize new choice

models; (iii) interpretable specifications can be derived for existing models;

and (iv) departures from rationality can be explicitly quantified.

JEL Classification: D01

Keywords: Choice Theory, Bounded Rationality, Comparative Richness

∗Pei: Huazhong University of Science and Technology, School of Economics,
peterpeiting@hotmail.com. Tang: Hong Kong University of Science and Technology,
Department of Economics, ruitang.economics@gmail.com. Yang: Hunan University, School
of Economics and Trade, xiangqianyang@hotmail.com. Zhao: The University of Hong Kong,
Faculty of Business and Economics, czhao@hku.hk.

1



1 Introduction

Rationality, a fundamental assumption of economics, posits that a decision
maker (DM) maintains a well-behaved preference ranking over choice alternatives
irrespective of the choice menu she faces, and when encountering any menu she
chooses the most preferred alternatives. Despite its normative appeal, empirical
evidence over the last half-century has documented various violations of this
assumption.1 In particular, a recurring theme is that observed choices often
exhibit menu effects—i.e., the relative desirability of alternatives often depends
on the menu encountered.

In standard economic theory, rationality is jointly characterized by Sen’s
α and β (Sen, 1971).2 Sen’s α states that every chosen alternative in a larger
menu that is available in a smaller menu should be chosen in the smaller menu;
Sen’s β states that if a chosen alternative in a smaller menu is also chosen in a
larger menu, then any chosen alternative in the smaller menu should be chosen
in the larger menu. Together, Sen’s α and β preclude the possibility of menu
effects, and thus ensure that the DM’s choices from doubletons induce choices
from larger menus in a consistent manner.

Conversely, a violation of either Sen’s α or β invariably amounts to the
situation in which the addition of an alternative (y) to a menu (A) increases the
desirability of an alternative (x) relative to some other alternative in the menu.
Specifically, if Sen’s α is violated, we can always find x, y, and A such that x is
not chosen in A but becomes chosen after the inclusion of y. In this scenario, the
desirability of x relative to other alternatives in A is elevated by y. Similarly, if
Sen’s β is violated, there exist x, y, and A such that some other alternative z is
chosen in A but is no longer chosen after the inclusion of y, whereas x is always
chosen. In this scenario, the desirability of x relative to z is boosted by y.

The above observations suggest a natural way of identifying a trace of
rationality from choices: Say that x and y are independent if they never
induce menu effects on each other—i.e., the addition of one does not boost
the desirability of the other relative to the rest of the alternatives in any given
menu. If we restrict our attention to a subset of the choice domain in which
the alternatives are pairwise independent, the DM will appear to be rational:
Choices from doubletons reveal a preference ranking that pins down choices

1See, for instance, Tversky (1969); Grether and Plott (1979); Huber, Payne and Puto
(1982); Simonson (1989); and Dembo, Kariv, Polisson and Quah (2021).

2Sen’s α first appears as Postulate 4 in Chernoff (1954).
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from larger menus in the standard manner. Even for a DM who systematically
violates rationality, this preference ranking over independent alternatives may
function as the cornerstone for identifying the logic behind the DM’s choices.

In this paper, we offer a unified approach to study departures from rationality
based on the aforementioned independence relation. We consider a rich choice
domain in which for every choice menu, we can always find an alternative that
is independent of every alternative in the menu. Under our key assumption,
Comparative Richness, these independent alternatives help gauge the desirability
of individual alternatives as well as menus of alternatives. In particular, a
well-behaved preference ranking over all menus, which we refer to as the shadow
preference, can be uniquely identified from the DM’s choices. With Comparative
Richness (and the resulting shadow preference), we investigate a variety of
choice axioms that allow departures from rationality and obtain new models
and characterization results.

Formally, Comparative Richness states that for all menus A, B with B ⊆ A,
there exists an alternative x that is independent of every alternative in A and is
as desirable as B in the sense that the chosen alternatives in B ∪ {x} include
both x and some alternative in B.

To demonstrate Comparative Richness and how the shadow preference can
be identified, consider a diner contemplating dessert options in a set course.
Four options may be offered: cheesecake (C), rice pudding (P ), plain yogurt
(Y ), and no dessert but a discount on the bill ($). The diner is completely
indifferent toward having any dessert or getting $, with the exception that if all
three desserts are available, regardless of the availability of $, P stands out as
the option that is not too unhealthy and reasonably tasty. In this example, $
is independent of every dessert, since the availability of $ does not boost the
desirability of any dessert relative to other options, and vice versa. Furthermore,
$ is as desirable as any proper submenu of {C, P, Y }, since the DM is completely
indifferent when offered each of these submenus of desserts together with $.

Observe that the above example does not satisfy Comparative Richness:
There does not exist an alternative that is independent of every dessert and is as
desirable as {C, P, Y }. However, Comparative Richness can be satisfied if we add
another option to the choice scenario. Suppose that a large discount ($$) may
also be offered by the restaurant. Assume further that the diner makes exactly
the same choices as before when $$ is not available; when $$ is available, the
diner exclusively chooses $$ unless all three desserts are also available, in which
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case her choices will be {P, $$}. Now it can be verified that $$ is independent
of any alternative (including itself trivially), and so is $. Moreover, any menu
that contains all three desserts or $$ will be as desirable as $$, and any other
menu will be as desirable as $, and thus Comparative Richness is established.
Since $$ is naturally more desirable than $, we obtain a ranking of desirability
over all menus—i.e., the shadow preference—in the extended domain.

In fact, for any choice correspondence over a given choice domain, we can
expand the domain and extend the choice correspondence properly, such that
the extended choice correspondence satisfies Comparative Richness. Hence,
Comparative Richness alone has minimal behavioral content. While Comparative
Richness itself has little bite, if imposed together with additional axioms it
strengthens many of them and delivers new behavioral implications.

First, under Comparative Richness, many axioms that are necessary for
rationality also become sufficient. We find that under Comparative Richness,
Sen’s α, Sen’s β, a weaker version of α, and a weaker version of β are all
equivalent. Each of the four axioms holds if and only if the DM ranks every
chosen alternative from a menu as desirable as the menu itself according to her
shadow preference, which can further be shown to be equivalent to rationality.
Thus, observed violations of one of these axioms will inevitably lead to violations
of the other axioms as the choice domain becomes richer. Notably, the two
weaker axioms are separately satisfied by many classic choice models, which
indicates that those models intersect with Comparative Richness at rationality.

Second, under Comparative Richness, many axioms that do not have clear
implications individually can now characterize interpretable choice models that
appear to be new to the literature. We show that under Comparative Richness,
Aizerman’s axiom (Chernoff, 1954; Aizerman and Malishevski, 1981; Aizerman,
1985), which states that deleting unchosen alternatives does not affect choices,
characterizes MP-rationalizability.3 That is, there is a linear order over all menus
such that given every menu A, the set of chosen alternatives maximizes the linear
order over all submenus of A. The linear order can be constructed from the DM’s
shadow preference by keeping its asymmetric part and breaking ties properly.
We also examine the Weaker Axiom of Revealed Preference (WrARP) (Jamison
and Lau, 1973; Fishburn, 1975), which states that if x is revealed to be strictly
better than y, then y cannot be revealed to be strictly better than x. It turns out

3 “MP” stands for “menu preference.”
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that under Comparative Richness, WrARP characterizes MO-rationalizability,4

which posits that the DM may either evaluate an alternative correctly or make
a mistake by slightly overevaluating it. In this model, the DM’s normative
preference over alternatives can be constructed exactly as the restriction of her
shadow preference to singleton menus.

Third, we demonstrate how Comparative Richness can provide additional
insights into behavioral characterizations that are already valid even without it.
We consider a natural generalization of the Weak Axiom of Revealed Preference
with Limited Attention (Masatlioglu, Nakajima and Ozbay, 2012) to choice
correspondences. We show that our axiom characterizes GA-rationalizability,5

which posits that the DM pays attention to a subset of the feasible alternatives
and chooses the ones that are more desirable than a menu-dependent benchmark.
With Comparative Richness, however, we may construct a linear order over
all menus based on the shadow preference such that within every menu A, the
set of alternatives that catch the DM’s attention maximizes the linear order
over all submenus of A. Basically, Comparative Richness delivers a ranking of
how “eye-catching” each set of alternatives is, which provides a story behind the
attention filter in models with limited attention.

Last, we propose a new axiom, T -Weak Sen’s α, which explicitly quantifies
the DM’s departure from rationality. T -Weak Sen’s α states that for every
alternative x, there are at most T distinct alternatives that can trigger violations
of Sen’s α on the choice of x. When T = 1, the axiom represents the weakest
departure from Sen’s α. We find that under Comparative Richness, T -Weak Sen’s
α characterizes (T +1)-rationalizability, which posits that the DM’s evaluation of
each alternative depends on at most T other feasible alternatives. When T = 1,
(T + 1)-rationalizability nests the class of nontransitive preferences studied by
Bell (1982); Loomes and Sugden (1982); Fishburn (1989); and Bordalo, Gennaioli
and Shleifer (2012): There exists a function v such that x is preferred to y if
and only if v(x, y) ≥ v(y, x). We show that (T + 1)-rationalizability can shed
light on choices over lotteries with nontransitive preferences.

To demonstrate the broad applicability of our approach, we introduce several
canonical examples in which Comparative Richness holds. We examine these
examples in detail and offer additional ones in Section 3.2.

Rational choices. If the DM’s choices satisfy rationality, then every alternative
4 “MO” stands for “monotone overevaluation.”
5 “GA” stands for “generalized choices with limited attention.”
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is independent of itself as well as all other ones. For all menus A and B with
B ⊆ A, we can simply pick an alternative x from the chosen ones in B. Then
the chosen alternatives in B ∪ {x} = B automatically include both x and some
alternative (x) in B. Thus, Comparative Richness holds.

Choice with monetary alternatives. Let the choice domain be X ∪ R, in
which X is an arbitrary set of nonmonetary alternatives and each real number in
R is interpreted as a monetary alternative. Assume that monetary alternatives
cannot boost the desirability of any alternative relative to other options in
any menu, and vice versa. Then Comparative Richness is satisfied if given
every menu of nonmonetary alternatives B, there is a monetary alternative
x such that the chosen alternatives in B ∪ {x} include both x and some
alternative in B. Note that this requirement, together with the independence of
monetary alternatives, imposes no restriction on the DM’s choices from menus
of nonmonetary alternatives. Basically, we only need the monetary alternatives
to serve as the numeraire for desirability, as they do in the diner example.

Choice with attraction effects. Let the choice domain be Rn, in which
an alternative x = (x1, x2, · · · , xn) is interpreted as a product that has quality
xi in attribute i. Suppose that the DM has the normative utility v that is
continuous, strictly increasing in each argument, and for all i and x−i, the
range of v(·, x−i) is R. Let v+ be another utility function such that for every
alternative x, v+(x) ≥ v(x). Assume that the DM makes choices by maximizing
the menu-dependent utility u: If there is y ∈ A such that x ≥ y and x ̸= y,
then u(x, A) = v+(x); otherwise, u(x, A) = v(x). In other words, the DM
overevaluates x if there is a feasible alternative y that is dominated by x,
which captures the attraction effect studied by Huber, Payne and Puto (1982);
Huber and Puto (1983); and Ok, Ortoleva and Riella (2015). In this setting,
Comparative Richness will always be satisfied.

Our paper is related to a large stream of the literature on choice models that
generalize rationality. It has been shown that DMs may deviate from rational
choices due to the adoption of multiple rationales (Manzini and Mariotti, 2007;
Kalai, Rubinstein and Spiegler, 2002; Cherepavov, Feddersen and Sandroni,
2013); the status quo effect (Masatlioglu and Ok, 2005, 2014); limited memory
and attention (Masatlioglu, Nakajima and Ozbay, 2012; Lleras, Masatlioglu,
Nakajima and Ozbay, 2017; Bordalo, Gennaioli and Shleifer, 2020); reference
dependence (Kőszegi and Rabin, 2006; Ok, Ortoleva and Riella, 2015); or framing

6



and salience (Salant and Rubinstein, 2008; Bordalo, Gennaioli and Shleifer, 2012,
2013; Ellis and Masatlioglu, 2022). In contrast, we consider an independence
relation that is revealed from the absence of menu effects between two alternatives
and systematically study various kinds of departures from rationality under
a richness condition on this relation. We characterize a series of models that
appear to be new to the literature under this richness condition.

Our paper is also related to Richter (2020), as both papers derive results
that connect individual choices with preferences over menus. In particular, the
choose twice procedure proposed in Richter (2020) involves a DM who has a
linear order over sets and a linear order over alternatives. Given a menu, she first
chooses the most preferred submenu, then chooses the most preferred alternative
from the submenu. Our notion of GA-rationalizability with the consideration
set determined by a linear order over menus is a generalization of the choose
twice procedure to choice correspondences. We elaborate on the connection in
Section 4.2.3.

This is not the first paper in which the richness of the DM’s choices plays
an important role. In subjective expected utility theory, the fineness condition
of Savage (1954) posits that the state space can be divided into an arbitrary
number of events, each with a sufficiently small chance of occurrence. In the
context of random choices, Gul, Natenzon and Pesendorfer (2014) build on a
richness condition that is similar in spirit to Comparative Richness, in the sense
that both conditions alone have minimal behavioral implications. Comparative
Richness distinguishes itself from these two conditions by allowing the choice
domain to be finite. In this sense, Comparative Richness does bear empirical
relevance.

To avoid redundancy, we discuss other related work in each section. We
organize the paper as follows. We present baseline notation in Section 2 and our
notion of independence and Comparative Richness in Section 3. In Section 4, we
study the classic choice axioms under Comparative Richness, and in Section 5
we introduce T -weak Sen’s α and study its implications. The Appendix contains
all proofs omitted from the main body of the paper.

2 Preliminaries

For any nonempty set H, a binary relation ≿ over H is a subset of H × H. For
any a, b ∈ H, write a ≿ b if (a, b) ∈ ≿ and a ̸≿ b if (a, b) ̸∈ ≿. A binary relation
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≿ is reflexive if for all a ∈ H, a ≿ a; complete if for all a, b ∈ H, either a ≿ b or
b ≿ a; transitive if a ≿ b and b ≿ c implies a ≿ c; asymmetric if a ≿ b implies
b ̸≿ a; and antisymmetric if a ≿ b and b ≿ a implies a = b. A complete and
transitive binary relation is called a preference, and an antisymmetric preference
is called a linear order. For a given binary relation ≿, we denote by ≻ its
asymmetric part and ∼ its symmetric part, i.e., a ≻ b if and only if a ≿ b

and b ̸≿ a; a ∼ b if and only if a ≿ b and b ≿ a. We also use ≻ to denote an
asymmetric binary relation when there is no risk of confusion. For any two
binary relations ≿1 and ≿2, we say that ≿1 extends ≿2 if for all a, b ∈ H, a ≿1 b

implies a ≿2 b, and a ≻1 b implies a ≻2 b.
For a given binary relation ≿ over H and a finite subset K ⊆ H, we denote by

U≿(K) the elements in K that are undominated with respect to the asymmetric
part of ≿, i.e., U≿(K) = {a ∈ K : ∀b ∈ K, b ̸≻ a}. When ≿ is complete, U≿(K)
contains alternatives in K that are ranked higher than any other element in K

with respect to ≿—i.e., U≿(K) = {a ∈ K : ∀b ∈ K, a ≿ b}.
For a given nonempty set of alternatives X, a menu is a nonempty and

finite subset of it. For any nonempty Y ⊆ X, we use M(Y ) to denote the
collection of all menus of X that are contained in Y . We use A, B, C to denote
generic menus and x, y, z to denote generic alternatives. For a given set of
alternatives X and a mapping f : M(X) → M(X), the tuple (X, f) is said to
be a choice correspondence if for all A ∈ M(X), f(A) ⊆ A. When there is no
risk of confusion regarding the choice space (usually denoted by X), we will
also refer to f as a choice correspondence. For any two choice correspondences
(X, f) and (X ′, f ′), we say that (X ′, f ′) is an extension of (X, f) if X ⊆ X ′

and for all A ∈ M(X), f(A) = f ′(A). We say that a preference ≿ over X

rationalizes a choice correspondence f if for all A ∈ M(X), f(A) = U≿(A).
A choice correspondence (X, f) is rationalizable if it can be rationalized by a
preference over X.

3 Independence and Comparative Richness

In this section, we introduce a new notion of independence to capture the
situation in which two alternatives never induce menu effects on each other.
Then we introduce our richness condition based on this independence relation.
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3.1 Independence

To motivate our notion of independence, we first present the benchmark axioms
that characterize rationalizable choice correspondences.

Axiom 1 (Sen’s α). For all x ∈ X and A, B ∈ M(X) with x ∈ B ⊆ A,
x ∈ f(A) implies x ∈ f(B).

Axiom 2 (Sen’s β). For all x ∈ X and A, B ∈ M(X) with x ∈ B ⊆ A, if
x ∈ f(A) ∩ f(B), then f(B) ⊆ f(A).

It is well known that a choice correspondence is rationalizable if and only
if it satisfies Sen’s α and β. As discussed in the Introduction, an underlying
principle of the two axioms is that the addition of one alternative cannot boost
the desirability of one feasible alternative relative to other feasible ones. Our
definition of independence is motivated by this observation. Given a choice
correspondence f , for any two alternatives x and y, we say that x and y are
independent, or x is independent of y, denoted by x ⊥ y, if for every A ∈ M(X):6

x ∈ f(A ∪ {y}) ∩ A ⇒ x ∈ f(A) ⊆ f(A ∪ {y}),

y ∈ f(A ∪ {x}) ∩ A ⇒ y ∈ f(A) ⊆ f(A ∪ {x}).

By the definition, each alternative is independent of itself. To demonstrate the
definition, consider x ̸= y: If x is chosen in A ∪ {y} but not in A—a violation of
Sen’s α—then the addition of y must boost the desirability of x relative to chosen
alternatives in A; if x is chosen in both A and A∪{y} but f(A) ̸⊆ f(A∪{y})—a
violation of Sen’s β—then the addition of y must boost the desirability of x

relative to the alternatives in f(A)\f(A∪{y}). Thus, the independence between
x and y implies that for any menu that contains x, adding y to the menu does
not boost the desirability of x relative to any other alternative in the menu, and
vice versa. The following proposition demonstrates how independence relates to
rationalizability. Its proof is evident and thus omitted.

Proposition 1. A choice correspondence (X, f) is rationalizable if and only if
for all x, y ∈ X, x ⊥ y.

Two sets A and B are said to be independent, denoted by A ⊥ B, if for all
x ∈ A and y ∈ B, x ⊥ y.7 A collection of menus {Ai}i∈I is said to be a mutually

6More rigorously, we should write ⊥f to indicate that the independence relation depends
on the underlying choice correspondence f . We write ⊥ instead of ⊥f whenever there is no
risk of confusion.

7With a harmless abuse of notation, we write x ⊥ A instead of {x} ⊥ A.

9



independent collection (MIC) if for all i, j ∈ I with i ̸= j, we have Ai ⊥ Aj. We
will refer to each element of an MIC as a block.8

Theorem 1. Let {Ai}i∈I be an MIC. For all i, j ∈ I and menus A, B such that
Ai ∪ Aj ⊆ B ⊆ A ⊆ ⋃

k∈I Ak, the following statements hold:
(1) f(A) ∩ Ai ∈ {f(Ai), ∅};
(2) If f(A) ∩ Ai ̸= ∅, then f(B) ∩ Ai ̸= ∅;
(3) If f(B) ∩ Ai ̸= ∅, f(B) ∩ Aj ≠ ∅ and f(A) ∩ Ai ̸= ∅, then f(A) ∩ Aj ̸= ∅.

Statement (1) states that for any given block, the set of alternatives within
the block that gets chosen, if nonempty, must be the same in all menus that
contain the block. If we view each block of the MIC as an “alternative,” then
statements (2) and (3) can be interpreted as the counterpart of Sen’s α and β,
respectively. The following proposition makes the analogy clear.

Proposition 2. Let Π = {Ai}i∈I be an MIC. There exists a unique preference
⊵ over Π such that for every i ∈ I and every nonempty and finite J ⊆ I,
f(⋃

j∈J Aj) ∩ Ai ̸= ∅ if and only if Ai ∈ U⊵({Aj}j∈J).

For any Π that is an MIC, the preference ⊵ over Π that satisfies the condition
of Proposition 2 is said to rationalize f on Π. Theorem 1 and Proposition 2
together suggest that when the DM faces a menu that is the union of an MIC,
her choices can be modeled as a two-stage process: First, she selects the most
preferred blocks according to a preference over the blocks; second, she makes
choices from each selected block.

Proposition 2 also implies the following corollary, which states that if two
MICs contain common blocks, then the preferences that rationalize f on the
two MICs must agree on the rankings among the common blocks. The proofs of
Proposition 2 and the following corollary are trivial and thus omitted.

Corollary 1. For all MICs Π1 and Π2, if A, B ∈ Π1 ∩ Π2, then A ⊵1 B if and
only if A ⊵2 B, where ⊵1 and ⊵2 rationalize f on Π1 and Π2, respectively.

Define a binary relation ⊵0 over M(X) such that A ⊵0 B if and only if
A ⊥ B and f(A ∪ B) ∩ A ̸= ∅. Note that the restriction of ⊵0 to any MIC is
a preference, but ⊵0 itself may not be a preference: Any two menus that are
not independent cannot be ranked by ⊵0. Corollary 1 implies that this binary
relation governs the DM’s choices over blocks whenever she faces a menu that

8Note that it is not necessarily true that two blocks of an MIC are disjoint.
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is the union of an MIC. Thus, we interpret this binary relation as a ranking of
desirability over menus. Notably, when ranking any pair of menus, ⊵0 takes
into account all menu effects among alternatives within each menu but excludes
any menu effects between alternatives from different menus. As will be shown
in the next section, Comparative Richness offers a natural way of extending this
desirability ranking to all menus.

3.2 Comparative Richness

We proceed to introduce our richness condition. Given a choice correspondence
f , we say that an alternative x is comparable to a menu A under f , denoted
as x ≈f A, if x ∈ f(A ∪ {x}) and f(A ∪ {x}) ∩ A ̸= ∅. In other words, x is
comparable to A if both x and some alternative in A are chosen in A ∪ {x}.
Note that x ∈ f(A) directly implies x ≈fA.

Definition 1. A choice correspondence (X, f) satisfies Comparative Richness if
for all menus A and B with B ⊆ A, there exists x ∈ X such that x ⊥ A and
x ≈fB.

Comparative Richness states that for any menu A and any submenu B of
A, we can find an alternative x that is independent of A and comparable to
B. With this condition, we can compare the desirability of any two menus via
independent alternatives, regardless of whether they are independent. To see
this, consider two arbitrary menus A′ and B′. Comparative Richness enables
us to find x and y such that x ⊥ y, {x, y} ⊥ A′ ∪ B′, x ≈fA′, and y ≈fB′.9 It
follows that {x} and {y} are as desirable as A′ and B′, respectively.10 Since
x ⊥ y, {x} is more desirable than {y} if and only if x is chosen in {x, y}. Thus,
the comparison of the desirability of A′ and B′ can be revealed by the choice
made in {x, y}. We formalize our analysis in the following definition.

Definition 2. Given a choice correspondence (X, f), the shadow order of f ,
denoted by ⊵f, is a binary relation over M(X) such that for all menus A and B,
A ⊵f B if there exist x, y ∈ X such that x ⊥ y, {x, y} ⊥ A ∪ B, x ≈fA, y ≈fB,

9To see how Comparative Richness implies the existence of such x and y, note that we
can first pick x ∈ X such that x ⊥ A′ ∪ B′ and x ≈f A′. Then we pick y ∈ X such that
y ⊥ A′ ∪ B′ ∪ {x} and y ≈fB′.

10To clarify the language, the desirability of alternative x may depend on the set of
feasible alternatives, but the desirability of the menu {x} excludes any menu effects that other
alternatives may induce on x.
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and x ∈ f({x, y}). We use ▷f and ▷◁f to denote the asymmetric and symmetric
parts of ⊵f, respectively.

Our next theorem demonstrates that Comparative Richness enables us to
identify a unique desirability ranking over all menus through the procedure
described above.

Theorem 2. A choice correspondence (X, f) satisfies Comparative Richness if
and only if the shadow order ⊵f is a preference. Furthermore, if (X, f) satisfies
Comparative Richness, the following statements hold:

(1) For all menus A and B, A ⊵f B if and only if for all x, y ∈ X with
x ⊥ y, {x, y} ⊥ A ∪ B, x ≈fA and y ≈fB, we have x ∈ f({x, y});

(2) The shadow order ⊵f rationalizes f on every MIC;
(3) For all menus A and B, if B ⊆ A, then A ⊵f B; if B ⊆ A and B ⊵f A,

then f(B) ⊆ f(A).

By Theorem 2, Comparative Richness is not only sufficient but also necessary
for the shadow order to be a preference. If a choice correspondence f satisfies
Comparative Richness, we will refer to ⊵f as the shadow preference of f . We
interpret ⊵f as a ranking of desirability over all menus. In particular, statement
(2) implies that ⊵f is an extension of the desirability ranking ⊵0 that we define
for mutually independent menus. Since ⊵f is transitive and is obtained from
⊵0 through indirect comparison, ⊵f also coincides with the transitive closure
of ⊵0.11 Thus, Comparative Richness implies that the transitive closure of ⊵0

extends ⊵0 and is complete.
Statement (3) states that larger menus are more desirable, and choices made

in a smaller menu remain chosen in a larger one when the two menus are equally
desirable. We will refer to this property as the monotonicity of the shadow
preference. To see why monotonicity holds, let A = B ∪ {x} and assume that
there is an alternative y that is independent of A and comparable to B. Applying
statement (2) to the MIC {B, {y}} yields B ▷◁f {y}. Thus, we can use y as a
benchmark for comparing the desirability of A and B. To see why larger menus
are more desirable, consider the MIC {A, {y}} and suppose to the contrary
that {y} ▷f A. This means that only y is chosen in the menu A ∪ {y} and
y ̸∈ A. However, it follows that the addition of x to B ∪ {y} has increased the

11Formally, for any given binary relation ≿ over H, its transitive closure is a binary relation
≿+ over H such that for all a, b ∈ H, a ≿+ b if there is a finite sequence (ak)n

k=1 such that
a1 = a, an = b, and for all k ∈ {1, ..., n − 1}, ak+1 ≿ ak.
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desirability of y relative to other chosen alternatives in B, which cannot be the
case since x ⊥ y. Thus, we conclude that A ⊵f {y} ▷◁f B. To see the second
part of monotonicity, assume further that A ▷◁f {y} ▷◁f B. Since y ⊥ A, we have
f(A ∪ {y}) = f(A) ∪ {y} and f(B ∪ {y}) = f(B) ∪ {y}. If there exists z ∈ f(B)
but z ̸∈ f(A), then the fact that y is chosen in both A ∪ {y} and B ∪ {y} implies
that the addition of x to the menu B ∪ {y} has boosted the desirability of y

relative to z, which cannot happen since x ⊥ y.

To illustrate Theorem 2, we revisit the examples presented in the Introduction
and provide an additional example.

Rational choices revisited. Let (X, f) be rationalized by a preference ≿ over
X. For any menus A and B with B ⊆ A, pick x ∈ U≿(B). We have x ≈fB and
x ⊥ A. Thus, Comparative Richness holds. The shadow preference ⊵f satisfies
that for all menus A and B, A ⊵f B if and only if there is x ∈ A such that for
all y ∈ B, x ≿ y.

Choice with monetary alternatives revisited. Let X ∪ R be the choice
domain. Let u be a menu-dependent utility function such that for all menu
A and x ∈ A, u(x, A) = x if x ∈ R, and u(x, A) = u(x, A\R) if x ∈ X. For
all menu A and x, y ∈ X, we require u(x, A) ≤ u(x, A ∪ {y}) to allow for the
possibility that nonmonetary alternatives may boost the desirability of each
other relative to the monetary alternatives. Let the choice correspondence f be
such that for every menu A, f(A) = arg maxx∈A u(x, A).

We show that for all alternatives x and y, if x ∈ R, then x ⊥ y. To see this,
first consider adding the monetary alternative x to a menu A that contains y.
Since the utility of every alternative in A is unaffected by the addition of x,
if y is chosen in A ∪ {x}, then y must also be chosen in A, and every chosen
alternative in A, which has the same menu-dependent utility as y in both A and
A ∪ {x}, will also be chosen in A ∪ {x}. Now, consider adding alternative y to
menu B that contains x. Suppose that x is chosen in B ∪ {y}. Since the utility
of x is always equal to x and the utility of any z ∈ B can only increase with the
addition of y, it must be the case that x is chosen in B. Furthermore, consider
any chosen alternative w in B. The utility of w in B must be exactly x. Since
the addition of y cannot decrease the utility of w, the utility of w in B ∪ {y}
cannot be lower than x. Then the fact that x is chosen in B ∪ {y} implies that
w must also be chosen in B ∪ {y}.

By the above argument, Comparative Richness holds since for any two menus
A and B with B ⊆ A, there exists x ∈ R such that maxy∈B u(y, B) = x, which
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ensures that x is comparable to B. The shadow preference then satisfies that for
all menus A and B, A ⊵f B if and only if maxx∈A u(x, A) ≥ maxy∈B u(y, B).

Choice with attraction effects revisited. Let (Rn, f) be the choice
correspondence such that for every menu A, f(A) = arg maxx∈A u(x, A), where
the definition of u follows from the Introduction. Since the desirability of
an alternative can only be boosted by a dominated alternative, following the
argument in the previous example, we can show that two alternatives are
independent if they do not dominate each other. For any two menus A and
B with B ⊆ A, we can find an alternative x = (x1, ..., xn) such that x ⊥ A

and v(x) = maxy∈B u(y, B), where the non-domination relation between x and
alternatives in A can be guaranteed by setting x1 to be large and x2 to be small.
Clearly, u(x, B ∪ {x}) = v(x) = maxy∈B u(y, B) = maxy∈B u(y, B ∪ {x}), which
indicates that x is comparable to B. Therefore, Comparative Richness holds.
The shadow preference satisfies that for all menus A and B, A ⊵f B if and only
if maxx∈A u(x, A) ≥ maxy∈B u(y, B).

Bounded context-dependent preferences. Let X = Rn (n ≥ 2) be the
space of alternatives, in which each dimension represents a specific attribute.
Each alternative x ∈ X takes the form x = (x1, ..., xn) with its coordinate in
each dimension denoting its quality in that attribute. We consider the context-
dependent preferences introduced by Tversky and Simonson (1993): For each
A ∈ M(X) and x ∈ A, the menu-dependent utility of x in A is given by
u∗(x, A) = v(x) + ∑

y∈A C(x, y). The term v(x) can be viewed as the normative
utility of x, and C(x, y) is the comparison utility of x when compared with some
other alternative y in the menu. Let the choice correspondence f be defined
such that for all A ∈ M(X), f(A) = arg maxx∈A u∗(x, A).

We consider a specific functional form of the context-dependent preference
model. Let v(x) = ∑n

k=1 vk(xk), where vk : R → R is monotone and onto. Define

Ĉ(x, y) = η
n∑

k=1
(max{vk(xk) − vk(yk), 0} + λ min{vk(xk) − vk(yk), 0})

for some η > 0 and λ > 1, and let C(x, y) = max{Ĉ(x, y), L} for some constant
L < 0. The function Ĉ takes the same functional form as the reference-dependent
utility in Kőszegi and Rabin (2006). To interpret, Ĉ(x, y) additively aggregates
the advantages and disadvantages of x over y, with the disadvantages having a
higher weight due to the loss aversion of the DM. The extra component of C

is the lower bound L, which means that the evaluation of a given alternative
cannot be reduced too much by the presence of another alternative.
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We argue that for any x, y ∈ X, x ⊥ y if and only if C(x, y) = C(y, x) = L.
Clearly, if C(x, y) = C(y, x) = L, then the addition of x to any menu cannot
boost the desirability of y relative to any other feasible alternative, and vice versa.
Conversely, suppose C(x, y) > L or C(y, x) > L. Since v(x) ≥ v(y) implies
C(x, y) ≥ C(y, x), we can assume WLOG that v(x) ≥ v(y) and C(x, y) > L.
Consider an alternative z such that v(z) = v(x) and C(x, z) = C(z, x) =
C(y, z) = C(z, y) = L (the strategy to find such an alternative z is to make v1(z1)
large enough and v2(z2) small enough without changing v(z)). Now, we have
u∗(x, {x, z}) = u∗(z, {x, z}) = v(x)+L and u∗(x, {x, y, z}) = v(x)+L+C(x, y) >

v(x) + 2L = u∗(z, {x, y, z}). Thus, x, z are chosen in {x, z}, but only x is chosen
in {x, y, z}, which implies that x and y are not independent.

Note that the choice correspondence f can be equivalently induced by the
maximization of the adjusted menu-dependent utility u such that for all menu
A and x ∈ A, u(x, A) = u∗(x, A) − (|A| − 1)L. With the above characterization
of the independence relation, it can be shown that x ⊥ y if and only if for
all menus A and B with x ∈ A and y ∈ B, u(x, A) = u(x, A ∪ {y}) and
u(y, B) = u(y, B ∪ {x}). Consider menus A and B with B ⊆ A. By definition,
x ≈f B if and only if u(x, B ∪ {x}) = maxy∈B u(y, B ∪ {x}). If x ⊥ A, it is
easy to see that x ≈fB if and only if v(x) = u(x, {x}) = maxy∈B u(y, B). To
show that f satisfies Comparative Richness, it suffices to find x ⊥ A with
v(x) = maxy∈B u(y, B). To do so, we just need to find an x with the right v(x)
and then increase v1(x1) and decrease v2(x2) to ensure x ⊥ A without varying
v(x). The shadow preference satisfies that for all menus A and B, A ⊵f B if
and only if maxx∈A u(x, A) ≥ maxy∈B u(y, B).

3.3 Behavioral Implication of Richness

In this section, we show that Comparative Richness alone has minimal behavioral
content. We show that for any choice correspondence over a given choice domain,
we can expand the domain and extend the choice correspondence properly such
that the extended choice correspondence satisfies Comparative Richness. Recall
that for any two choice correspondences (X, f) and (Y, g), we say that (Y, g) is
an extension of (X, f) if X ⊆ Y and for all A ∈ M(X), f(A) = g(A).

Definition 3. Given a choice correspondence (X, f), a preference ⊵ over M(X)
is a quasi-shadow preference of f if it satisfies monotonicity—i.e., for all menus
A and B, if B ⊆ A, then A ⊵ B; if B ⊆ A and B ⊵ A, then f(B) ⊆ f(A). We
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use ▷ and ▷◁ to denote its asymmetric and symmetric parts, respectively.

Note that for any choice correspondence f , there exists a quasi-shadow
preference of it: Consider the preference ⊵ over M(X) such that for all A, B ∈
M(X), A ⊵ B if and only if |A| ≥ |B|, and it clearly satisfies monotonicity.

Our next proposition demonstrates that any choice correspondence admits
an extension that satisfies Comparative Richness. Furthermore, we have the
freedom to regulate the extension with an arbitrary quasi-shadow preference.
Before presenting the proposition, we first define the canonical extensions of
choice correspondences.

Definition 4. Given a choice correspondence (X, f) and a quasi-shadow
preference ⊵ of it, an extension (Y, g) of (X, f) is ⊵-canonical if there is a
bijection Φ : Y \X → M(X) such that for every A ∈ M(Y ):

g(A) =


f(A ∩ X)∪{x ∈ A\X : A ∩ X ▷◁ Φ(x)}, if ∀x ∈ A\X, A ∩ X ⊵ Φ(x),

{x ∈ A\X : ∀y ∈ A\X, Φ(x) ⊵ Φ(y)}, otherwise.

The canonical extension (Y, g) is constructed such that each auxiliary
alternative y ∈ Y \X corresponds to a menu Φ(y) in M(X) with the desirability
of y being determined by the ranking of Φ(y) under ⊵ irrespective of the choice
menu encountered. For any A ∈ M(Y ), the extended choice correspondence
compares the desirability of menu A ∩ X with that of each auxiliary alternative
in A\X. If A ∩ X is weakly more desirable than every auxiliary alternative,
then g(A) contains the choices made in menu A ∩ X according to the original
choice correspondence f , together with the auxiliary alternatives that are as
desirable as A ∩ X. If some auxiliary alternative is strictly more desirable than
A ∩ X, then the most desirable auxiliary alternatives are selected by g.

Proposition 3. Let (X, f) be an arbitrary choice correspondence and ⊵ an
arbitrary quasi-shadow preference of it. If (Y, g) is a ⊵-canonical extension of
(X, f), then (Y, g) satisfies Comparative Richness, and ⊵g coincides with ⊵ on
M(X).

In the proof of Proposition 3, we show that for any canonical extension (Y, g),
the auxiliary alternatives are (i) mutually independent, (ii) independent of every
alternative in X, and (iii) comparable to their corresponding menus. To see
why we can accommodate any quasi-shadow preference when constructing the
canonical extension, consider menus A, B ⊆ X and suppose A ⊥ B under the
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original choice correspondence (X, f). Let x and y be the auxiliary alternatives
that correspond to A and B, respectively. On the one hand, if neither A nor B is a
subset of the other, then we have complete freedom to implement any desirability
ranking between A and B by specifying g({x, y}) accordingly. Even if g({x, y})
is not aligned with g(A∪B) (i.e., f(A∪B))—for example, g(A∪B) ∩A = ∅ but
x ∈ g({x, y}), it just means that A and B are no longer independent under the
extended choice correspondence. In other words, the independence relation under
the original choice correspondence does not necessarily need to be preserved in
the extension procedure. On the other hand, if B ⊆ A, we lose the freedom to
specify g({x, y}) = {y} and set B ▷g A. To see why, suppose to the contrary
that g({x, y}) = {y} and B ▷g A. It follows that {y} ▷◁g B ▷g A ▷◁g {x}, and
thus g(B ∪ {x}) = g(B) and g(A ∪ {x}) = g(A) ∪ {x}. This means that the
addition of some alternative in A\B has boosted the desirability of x relative to
other feasible alternatives, which contradicts the fact that x is independent of A.

Notably, if a given choice correspondence already satisfies Comparative
Richness, Proposition 3 implies that we can always extend the choice
correspondence to a larger domain such that the shadow preference of the
extended choice correspondence extends the original one.

4 Weak Rationality Meets Richness

In this section, we study classic choice axioms that are proposed in the literature
to characterize rationality or boundedly rational choice models.

4.1 Characterizing Rationality

We explore axioms that characterize rationality under Comparative Richness—
i.e., when Comparative Richness is satisfied, those axioms are necessary and
sufficient for a given choice correspondence to be rationalizable. We start with
weakenings of Sen’s α and β.

Axiom 3 (Binary Sen’s α). For all A ∈ M(X) and x, y ∈ f(A), f({x, y}) =
{x, y}.

Axiom 4 (Binary Sen’s β). For all A ∈ M(X) and x, y ∈ A, if f({x, y}) =
{x, y} and x ∈ f(A), then y ∈ f(A).
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Binary Sen’s α states that if two alternatives x and y are both chosen in
some menu A, then both are chosen in the binary menu {x, y}. Clearly, this
axiom weakens Sen’s α, since the choice of x and y in A can only imply their
choice in the binary menu {x, y} but not in every submenu of A that contains x

and y. Binary Sen’s β states that if two alternatives x and y are both chosen in
the binary menu {x, y}, then they must be simultaneously chosen or unchosen
in any given menu A that contains them.

To state the next axiom, we define Condorcet winners. Specifically, for any
menu A, an alternative x ∈ A is said to be a Condorcet winner in A if for all
y ∈ A, we have x ∈ f({x, y}). That is, x is a Condorcet winner if it is chosen
when compared with every other alternative in the menu. Denote by W(A) the
set of all Condorcet winners in menu A. The next axiom states that the set of
choices made in a given menu should coincide with the set of Condorcet winners
if the latter is nonempty.

Axiom 5 (Condorcet Consistency). For all A ∈ M(X), if W(A) ̸= ∅, then
f(A) = W(A).

The following theorem states that under Comparative Richness, Binary
Sen’s α, Binary Sen’s β, and Condorcet Consistency all lead to rational choice
behavior.

Theorem 3. If a choice correspondence (X, f) satisfies Comparative Richness,
then the following statements are equivalent:

(1) (X, f) satisfies Binary Sen’s α;
(2) (X, f) satisfies Binary Sen’s β;
(3) (X, f) satisfies Condorcet Consistency;
(4) (X, f) is rationalizable.
(5) For all menu A and x ∈ X, x ∈ f(A) implies {x} ▷◁f A.

Thus, observed violations of any one of Sen’s α, Sen’s β, Binary Sen’s α,
Binary Sen’s β, or Condorcet Consistency will inevitably lead to violations of
the other four axioms as the choice domain becomes richer.

Notably, many boundedly rational choice models satisfy one of these axioms.
Thus, Theorem 3 implies that these models intersect with Comparative Richness
at rationality.

Choice of undominated alternatives. Jamison and Lau (1973, 1975) and
Fishburn (1975) study undominated choices under a binary relation ≿ such
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that for every menu A, f(A) = U≿(A). It is well known that such a choice
correspondence is well defined if and only if the asymmetric part ≻ of the binary
relation is acyclic.12 We note that such a choice correspondence f satisfies Sen’s
α: If x is selected in a menu A, then it is not dominated (with respect to ≻) by
any other alternative in A and thus is chosen in any smaller menu that contains
it. Hence, this model intersects with our richness condition at rationality.

Choice with a sequence of α filters. An important stream of the literature
concerns DMs who conduct multiple rounds of eliminations of alternatives to
reach their final choices. For instance, Manzini and Mariotti (2007) study
choices with an ordered sequence of rationales (binary relations) whereby the
DM eliminates dominated alternatives sequentially.13 Cherepavov, Feddersen
and Sandroni (2013) consider a DM who has a preference over the alternatives
and a set of rationales. For any given menu, the DM first eliminates alternatives
that are dominated under every rationale, and then selects her most preferred
alternative according to her preference within the remaining alternatives.14

The choice models above can be generalized by a sequential procedure
such that in every round, the DM applies a filter to eliminate alternatives.
Specifically, an α filter is a function Γ : M(X) → 2X such that for all menus A

and B, (i) Γ(A) ⊆ A, and (ii) Γ(A ∪ B) ∩ B ⊆ Γ(B). We note that property
(ii) is a restatement of Sen’s α. We say that a choice correspondence f is
sequentially α-filtered if there exists a finite sequence of α filters (Γk)n

k=1 such
that f = Γn ◦ Γn−1 ◦ · · · ◦ Γ1.

In fact, a choice correspondence satisfies Binary Sen’s α if it is sequentially
α-filtered.15 To see this, consider x, y ∈ f(A) = Γn ◦ Γn−1 ◦ · · · ◦ Γ1(A). Since x

and y are not filtered out by any α filter in the sequence, we have that for each
k ∈ {1, ..., n}, there exists Bk ⊆ A such that x, y ∈ Γk(Bk). Thus, for each k,
Γk({x, y}) = {x, y} and we have f({x, y}) = {x, y}.

To summarize, any choice model in which choices are sequentially α-filtered,
including those by Manzini and Mariotti (2007) and Cherepavov, Feddersen and
Sandroni (2013), intersects with our richness condition at rationality.

Top-cycle choices. A large stream of the literature has investigated choices
12The binary relation ≻ is said to be acyclic if for any finite sequence of alternatives (xi)n+1

i=1
with x1 = xn+1, it cannot happen that for all k ∈ {1, ..., n}, xk ≻ xk+1.

13See also Au and Kawai (2011) for rationalizing sequential choices with transitive rationales.
14See also Ridout (2021) for the situation in which each rationale is a preference. Ridout

(2021) also offers an axiomatic foundation for such choices in the space of risky prospects.
15However, such a choice correspondence may not satisfy Sen’s α. See, for instance, Case 2

of the example in Section I.B of Manzini and Mariotti (2007).
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made under a complete but not necessarily transitive binary relation ≿, including
papers on voting (Miller, 1977, for example). Such a binary relation is often
referred to as a nontransitive preference.16 In the context of social choices,
a nontransitive preference may emerge when aggregating the preferences of
multiple individuals. In the context of individual decision-making, a nontransitive
preference may be obtained from the DM’s choices over binary menus. As we
have noted, if the asymmetric part of the nontransitive preference is not acyclic,
then using the set of undominated alternatives U≿(A) to describe the choices
made in a menu A may result in an empty set of choices.

The literature offers remedies for the above problem by suggesting that the
DM’s choices are those undominated with respect to the transitive closure of the
nontransitive preference ≿ in each menu (Kalai, Pazner and Schmeidler, 1976;
Kalai and Schmeidler, 1977).17 Specifically, for a given menu A, the transitive
closure of ≿ in A, denoted by ≿+

A, is defined such that for all x, y ∈ A, x ≿+
A y if

and only if there is a sequence of finite alternatives (xk)n
k=1 in A such that x1 = x,

xn = y, and for k = 1, ..., n − 1, xk ≿ xk+1. The DM chooses f(A) = U≿+
A

(A) in
each menu A. Choices in U≿+

A
(A) are called the top-cycle choices in A. As shown

by Theorem 5.1 of Evren, Nishimura and Ok (2019), the choice correspondence
that selects top-cycle choices satisfies the Weak Arrow’s Choice axiom, which
is a stronger version of Sen’s β.18 Therefore, the model of top-cycle choices
intersects with our richness condition at rationality.

Covering relation. The covering relation, proposed and studied by Fishburn
(1977) and Miller (1980), is an important welfare principle in the literature on
nontransitive preferences. For a given nontransitive preference ≿ and a menu A,
the covering relation ≿cov

A over A is defined such that for all x, y ∈ A, x ≿cov
A y

if for all z ∈ A, y ≿ z implies x ≿ z. Clearly, ≿cov
A is transitive, and thus the

set U≿cov
A

(A) is nonempty. Choices in U≿cov
A

(A) can be considered as those that
are efficient under the welfare principle. If for every menu A, the DM’s set of
choices f(A) coincides with U≿cov

A
(A), then f satisfies Condorcet Consistency.

It follows that this class of choice models are equivalent to rationality under
Comparative Richness.

To see why Condorcet Consistency is satisfied, note that x ≿ y, x ≿cov
{x,y} y,

16By our terminology, a preference is a nontransitive preference that satisfies transitivity.
17See also Ehlers and Sprumont (2008) and Evren, Nishimura and Ok (2019) for more

discussions and characterizations of this choice model.
18The Weak Arrow’s Choice axiom states that for all x ∈ X and A, B ∈ M(X) with

x ∈ B ⊆ A, if x ∈ f(A), then f(B) ⊆ f(A).
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and x ∈ f({x, y}) are all equivalent. On the one hand, if W(A) is not empty,
then for every Condorcet winner x in A, we have that for every z ∈ A, x ≿ z.
It follows that for every y ∈ A, x ≿cov

A y. Thus, each Condorcet winner in A

must be chosen. On the other hand, consider any two alternatives x ∈ W(A)
and y ∈ A\W(A). There is z ∈ A such that x ≿ z but z ≻ y, which implies
y ̸≿cov

A x. It follows that x ≻cov
A y and y /∈ U≿cov

A
(A). Thus, only alternatives in

W(A) are chosen.

4.2 Revisiting Other Classic Axioms

Based on the preceding discussions, under Comparative Richness, many classic
axioms are sufficient for rationality. In this section, we study axioms that lead
to nontrivial bounded rational choice models under Comparative Richness.

4.2.1 Aizerman’s Axiom and Reducibility

We begin with Aizerman’s axiom.

Axiom 6 (Aizerman). For all A ∈ M(X) and x ∈ A\f(A), f(A) = f(A\{x}).

Aizerman’s axiom states that deleting unchosen alternatives in a given menu
does not affect the set of chosen alternatives. The axiom was first introduced
by Chernoff (1954) and referred to as the property of independence of rejecting
outcast variants by Aizerman and Malishevski (1981) and Aizerman (1985).

Aizerman’s axiom is satisfied by many choice models. For instance, the
choice correspondence that selects undominated alternatives under a transitive
binary relation satisfies this axiom.19 Other choice models that satisfy the
axiom include the top-cycle choice model we discussed in Section 4.1 and the
model of choice with a preference structure introduced by Evren, Nishimura and
Ok (2019).20 Aizerman and Malishevski (1981) and Moulin (1985) show that

19To see this, consider a transitive binary relation ≿. Note that its asymmetric part ≻ is
also transitive. Thus, for any menu A, each alternative in A\U≿(A) must be ≻-dominated by
some alternative in U≿(A). Hence, for every x ∈ A\U≿(A), we have U≿(A) = U≿(A\{x}).

20A preference structure is a tuple (≿,≿∗) such that ≿ is a complete binary relation
(nontransitive preference) over X, and ≿∗ is a reflexive and transitive binary relation over X,
with certain consistency conditions imposed on the tuple (Nishimura and Ok, 2018). Evren,
Nishimura and Ok (2019) study choices with a preference structure (≿,≿∗) whereby for each
menu A, the DM considers the set of top-cycle choices B in A under ≿, and applies ≿∗

to eliminate strictly dominated choices. Theorem 5.2 of Evren, Nishimura and Ok (2019)
demonstrates that the model of choice with a preference structure satisfies Aizerman’s axiom.
We note that the top-cycle choice model is a special case of the model of choice with a
preference structure when the second binary relation ≿∗ is the trivial one—i.e., for all x, y ∈ X,
x ≿∗ y if and only if x = y.
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Aizerman’s axiom and Sen’s α can jointly characterize choice correspondences
that are rationalizable by multiple preferences. That is, a choice correspondence
f satisfies the two axioms if and only if there exists a nonempty set of preferences
{≿k}k∈I over X such that for every menu A, f(A) = ⋃

k∈I U≿k
(A).

We introduce a weaker version of Aizerman’s axiom, which is studied by Li,
Tang and Zhang (2023) to characterize how DMs associate alternatives with
each other in her consideration set.

Axiom 7 (Reducibility). For all A ∈ M(X), if for all x ∈ A, f(A\{x}) ̸= f(A),
then f(A) = A.

We say that a menu A is invariant if f(A) = A. We interpret Reducibility
by considering its contrapositive: For every menu A, if A is not invariant, then
there exists x ∈ A such that f(A\{x}) = f(A). Note that such an alternative
x cannot be chosen in f(A). Thus, the axiom states that we can find one
alternative that is not chosen, such that deleting it has no impact on the set of
chosen ones. This axiom is satisfied, for instance, by the choice correspondence
that selects undominated alternatives with respect to an acyclic binary relation,
while Aizerman’s axiom may not.21 Nevertheless, the following theorem asserts
that under Comparative Richness, Aizerman’s axiom and Reducibility lead to
the same choice model.

Theorem 4. If (X, f) satisfies Comparative Richness, then the following
statements are equivalent:

(1) (X, f) satisfies Aizerman’s axiom;
(2) (X, f) satisfies Reducibility;
(3) For every menu A, f(A) is invariant and A ▷◁f f(A);
(4) There exists a linear order ⊵ over M(X) such that for all menus A and

B with B ⊆ A, f(A) ⊵ B.

We will refer to the linear order ⊵ in (4) as the implied menu preference, and
f is said to be MP-rationalized by ⊵.22 Essentially, the DM’s choices can be

21Consider an acyclic binary relation ≻ over X. Note that an acyclic binary relation
must be asymmetric, and thus the asymmetric part of ≻ is just ≻ itself. For any menu A,
if A\U ≻(A) is not empty, by acyclicity we can find some y ∈ A\U ≻(A) such that y does
not dominate any other alternative in A\U ≻(A) with respect to ≻. It follows that y does
not dominate any other alternative in A. Deleting such an alternative y will not affect the
set of alternatives that are ≻-undominated in A. Thus, U ≻(A) = U ≻(A\{y}). Therefore,
Reducibility is satisfied. To see that Aizerman’s axiom may be violated, consider X = {x, y, z}
and a binary relation ≻ = {(x, y), (y, z)}. We have U ≻(X) = {x}, while U ≻(X\{y}) = {x, z}.

22Recall that “MP” stands for “menu preference.”
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interpreted as committing to her favorite submenu according to ⊵, anticipating
that each choice in the submenu will be optimal under some contingency. The
fact that the DM does not want to commit to a single alternative may be due
to a preference for flexibility (Kreps, 1979) or the anticipation of information
before the eventual choice (Dillenberger, Lleras, Sadowski and Takeoka, 2014).

To see that statement (3) implies (4), we construct the linear order ⊵ in (4)
such that every invariant menu is ranked strictly higher than every non-invariant
menu. Among invariant menus, we only need to guarantee that ⊵ is consistent
with the shadow preference ⊵f with ties being broken by the set inclusion
order—i.e., for any two distinct invariant menus A and B, A ▷ B if either (i)
A ▷f B or (ii) A ▷◁f B and B ⊆ A. Such a linear order ⊵ MP-rationalizes f .
To see this, consider a menu A. Note that for any invariant B ∈ M(A), either
f(A) ▷◁fA ▷f B or f(A) ▷◁f A ▷◁f B. By monotonicity of ⊵f, f(A) ▷◁f A ▷◁f B

implies f(B) = B ⊆ f(A). Therefore, B ̸= f(A) implies f(A) ▷ B.
We note that statement (4) implies (1) even without Comparative Richness.

That is, any choice correspondence f that is MP-rationalized by some linear
order ⊵ necessarily satisfies Aizerman’s axiom. To see this, consider a menu A

and an alternative x ∈ A\f(A). It follows that f(A) ∈ M(A\{x}) and for all
B ∈ M(A\{x}), f(A) ⊵ B. Therefore, we have f(A\{x}) = f(A).

In the Online Appendix, we provide two examples: One shows that MP-
rationalizability and Comparative Richness together cannot imply rationaliz-
ability; the other shows that without Comparative Richness, Aizerman’s axiom
alone cannot imply MP-rationalizability.

4.2.2 Weaker Axiom of Revealed Preference

The next axiom we study is the Weaker Axiom of Revealed Preference, which is
a weaker version of the Weak Axiom of Revealed Preference.

Axiom 8 (Weak Axiom of Revealed Preference (WARP)). For all A, B ∈ M(X)
and x, y ∈ A ∩ B, if x ∈ f(A) and y /∈ f(A), then y /∈ f(B).23

Axiom 9 (Weaker Axiom of Revealed Preference (WrARP)). For all A, B ∈
M(X) and x, y ∈ A ∩ B, if x ∈ f(A), y /∈ f(A), and x /∈ f(B), then y /∈ f(B).

WARP entails a revealed preference interpretation: If an alternative x is
chosen in A while y is not, then it is revealed that x is strictly better than y.

23The standard statement of WARP is as follows: For all A, B ∈ M(X) and x, y ∈ A ∩ B,
if x ∈ f(A) and y ∈ f(B), then x ∈ f(B). This statement is equivalent to the one above.
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Thus, whenever x is feasible in menu B, y cannot be chosen. Similarly, WrARP
states that if x is revealed to be strictly better than y, then y cannot be revealed
to be strictly better than x. It is well known that a choice correspondence
satisfies WARP if and only if it is rationalizable, and WrARP is not sufficient for
rationalizability. In the literature, WrARP appears as Axiom 3 in Jamison and
Lau (1973) and is shown in Fishburn (1975) to be one of the key axioms that
characterize the choice of undominated alternatives under an interval order.24

To proceed, we introduce the choice model that can be characterized by
WrARP under Comparative Richness. For a given preference ≿ over X, we say
that y is just better than x if y ≻ x and there does not exist alternative z ∈ X

such that y ≻ z ≻ x. For each alternative x, denote by J+
≿ (x) the set of all

alternatives that are just better than x. Let G(X) ⊆ X × M(X) be such that
(x, A) ∈ G(X) if and only if x ∈ A.

Definition 5. Let ≿ be a preference over X and γ : G(X) → X be a function.
The pair (≿, γ) is a monotone overevaluation system if the following conditions
are satisfied for all A, B ∈ M(X) and x, y ∈ A ∩ B:

(1) γ(x, A) ∈ {x} ∪ J+
≿ (x);

(2) If B ⊆ A and γ(x, B) ∈ J+
≿ (x), then γ(x, A) ∈ J+

≿ (x);
(3) If x ∼ y, γ(x, A) = x, γ(y, A) ∈ J+

≿ (y), and γ(x, B) ∈ J+
≿ (x), then

γ(y, B) ∈ J+
≿ (y).

A choice correspondence (X, f) is MO-rationalized 25 by the monotone overeval-
uation system (≿, γ) if for all A ∈ M(X), x ∈ f(A) if and only if for all y ∈ A,
γ(x, A) ≿ γ(y, A). A choice correspondence (X, f) is MO-rationalizable if there
is a monotone overevaluation system that MO-rationalizes (X, f).

By Definition 5, for a given monotone overevaluation system (≿, γ), each
alternative x ∈ A is evaluated according to alternative γ(x, A). There are two
cases: The DM can either evaluate x correctly (i.e., γ(x, A) = x) or make a
mistake by slightly overevaluating x (i.e., γ(x, A) ∈ J+

≿ (x)), possibly due to
ignorance of some inferior attribute of x. Note that γ(x, A) ∈ {x}∪J+

≿ (x) means
that the DM only makes minor mistakes.

The notable conditions in Definition 5 are (2) and (3). Condition (2) states
that the DM is more likely to make mistakes when she faces a larger menu.

24An interval order is an asymmetric binary relation ≻ over X such that for all x, y, z, w ∈ X,
if x ≻ y and z ≻ w, then either x ≻ w or z ≻ y. See Fishburn (1970) for more details.

25Recall that “MO” stands for “monotone overevaluation.”
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Condition (3) states that equally desirable alternatives can be ranked according
to the DM’s tendency to overevaluate them.

Theorem 5. If (X, f) satisfies Comparative Richness, then the following
statements are equivalent:

(1) (X, f) satisfies WrARP;
(2) (X, f) is MO-rationalizable;
(3) (X, f) is MO-rationalized by a monotone overevaluation system (≿, γ)

such that for all x, y ∈ X, x ≿ y if and only if {x} ⊵f {y}.

In the construction of the monotone overevaluation system, the key step
is to show that for all menu A and x ∈ f(A), there does not exist any y ∈ X

such that A▷f {y}▷f {x}. This property of the shadow preference implies that
there can only be a slight overevaluation; that is, each alternative can at most
be mistakenly evaluated as some alternative that is just better.

Again, even without Comparative Richness, the fact that f is MO-rationalized
by a monotone overevaluation system (≿, γ) is sufficient for it to satisfy WrARP.
To see this, suppose to the contrary that we can find two menus A and B

and two alternatives x and y contained in both menus such that x ∈ f(A),
y /∈ f(A), x /∈ f(B), but y ∈ f(B). It follows that γ(x, A) ≻ γ(y, A) and
γ(y, B) ≻ γ(x, B). It is clear that we must have x ∼ y. Thus, x is overevaluated
in A but not in B, and y is overevaluated in B but not in A, which contradicts
condition (3) of Definition 5.

In the Online Appendix, we provide two examples related to Theorem 5:
One example shows that WrARP and Comparative Richness together cannot
imply rationalizability and the other shows that without Comparative Richness,
WrARP alone is not sufficient for MO-rationalizability.

4.2.3 WARP with Limited Attention

In this section, we study choices with limited attention introduced by Masatlioglu,
Nakajima and Ozbay (2012) (henceforth MNO) under Comparative Richness.
The following axiom is a natural generalization of the Weak Axiom of Revealed
Preference with Limited Attention (WARP(LA)) proposed by MNO.

Axiom 10 (WARP(LA)∗). For every A ∈ M(X), there exists x ∈ A such that
for every B ∈ M(X), if f(B) ∩ A ̸= ∅ and f(B) ̸= f(B\{x}), then x ∈ f(B).

25



WARP(LA)∗ states that for every given menu A, there is an alternative x

such that if x is considered in some menu B (which is revealed from the fact
that deleting x from B affects the set of chosen alternatives), and an alternative
in A is chosen in B, then x must be chosen in B. Intuitively, if x is the best
alternative in A and is considered in B, then if any alternative in A is chosen in
B, the weakly better alternative x should also be chosen in B.

In contrast to our paper, MNO focus on choice functions: A choice
correspondence f is said to be a choice function if for every menu A, |f(A)| = 1.26

If f is a choice function, WARP(LA)∗ reduces to the requirement that for
every menu A, there exists x ∈ A such that for every menu B, if f(B) ∈ A

and f(B) ̸= f(B\{x}), then f(B) = x. This statement is precisely MNO’s
WARP(LA). In this sense, WARP(LA)∗ can be viewed as a natural generalization
of WARP(LA) to choice correspondences.

MNO show that WARP(LA) characterizes a DM who pays attention to a
subset of the feasible alternatives and chooses the best alternative among them.
Formally, a function Γ : M(X) → M(X) is said to be an attention filter if for
every menu A, (i) Γ(A) ⊆ A and (ii) for every x ∈ A\Γ(A), Γ(A\{x}) = Γ(A).27

To interpret, Γ(A) is the subset of alternatives the DM pays attention to in
menu A. This set is unaffected by the removal of alternatives in A to which the
DM does not pay attention.

Definition 6. A choice correspondence (X, f) is LA-rationalizable 28 if there
is a tuple (≿, Γ), where ≿ is a preference over X and Γ is an attention filter,
such that for every menu A, f(A) = U≿(Γ(A)). The tuple (≿, Γ) is said to
LA-rationalize f .

Whereas MNO show that a choice function satisfies WARP(LA) if and only
if it is LA-rationalizable, for general choice correspondences, WARP(LA)∗ may
not guarantee LA-rationalizability.

Definition 7. A choice correspondence (X, f) is GA-rationalizable 29 if there
exists a preference ≿ over X, an attention filter Γ, and a choice function τ such
that for every menu A, f(A) = {x ∈ Γ(A) : x ≿ τ(Γ(A))}. The tuple (≿, Γ, τ)
is said to GA-rationalize (X, f).

26When f is a choice function, we will abuse the notation a little bit by treating f(A) as
an alternative instead of a singleton menu.

27Basically, an attention filter is a choice correspondence that satisfies Aizerman’s axiom.
28 “LA” stands for “limited attention.”
29 “GA” stands for “generalized choices with limited attention.”
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GA-rationalizability posits that for any given menu A, the DM considers Γ(A)
and accepts each alternative in Γ(A) that is weakly better than a benchmark
alternative τ(Γ(A)). Note that if f is a choice function and can be GA-
rationalized by (≿, Γ, τ), then it is necessary that τ selects the ≿-best alternative
in Γ(A). Thus, for choice functions, GA-rationalizability is equivalent to LA-
rationalizability.

Theorem 6. A choice correspondence (X, f) is GA-rationalizable if and only if
it satisfies WARP(LA)∗.

We proceed to study the joint implication of WARP(LA)∗ and Comparative
Richness. To this end, we will show that Comparative Richness leads to a
particular class of attention filters—namely, ordered attention filters.

Formally, a function Γ : M(X) → M(X) is said to be an ordered attention
filter if there is a linear order ⊵ over M(X) such that for every menu A, Γ(A) is
the unique element in U⊵(M(A)).30 We will use Γ⊵ as shorthand for the ordered
attention filter induced by the linear order ⊵. One possible interpretation is
that ⊵ captures the salience of bundles of alternatives, and in every menu A,
the DM pays attention to the most salient bundle of alternatives in A.

Definition 8. A choice correspondence (X, f) is OA-rationalizable 31 if there
exists a preference ≿ over X, an ordered attention filter Γ, and a choice function
τ such that for every menu A, f(A) = {x ∈ Γ(A) : x ≿ τ(Γ(A))}. The tuple
(≿, Γ, τ) is said to OA-rationalize (X, f).

The following theorem demonstrates that under Comparative Richness,
WARP(LA)∗, GA-rationalizability, and OA-rationalizability are all equivalent.

Theorem 7. If (X, f) satisfies Comparative Richness, then the following
statements are equivalent:

(1) (X, f) satisfies WARP(LA)∗;
(2) (X, f) is GA-rationalizable;
(3) (X, f) is OA-rationalizable.

We briefly demonstrate why GA-rationalizability implies OA-rationalizability
under Comparative Richness. For a given choice correspondence (X, f) that

30Basically, an ordered attention filter is an MP-rationalizable choice correspondence. Recall
that MP-rationalizable choice correspondences necessarily satisfy Aizerman’s axiom. Thus,
any ordered attention filter is an attention filter.

31 “OA” stands for “ordered attention.”
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is GA-rationalizable, we can construct a tuple (≿, Γ, τ) that GA-rationalizes f

and satisfies that for every menu A, Γ(A) ▷◁fA. Following a procedure similar
to the proof of Theorem 4, we can start with the shadow preference ⊵f, break
ties properly, and end up with a linear order ⊵ such that for all menu A and
submenu B ⊆ A, Γ(A) ⊵ B. Thus, the tuple (≿, Γ, τ) also OA-rationalizes f .

In the Online Appendix, we present an example that demonstrates that
without Comparative Richness, GA-rationalizability is insufficient for OA-
rationalizability.

We conclude this section by noting that the OA-rationalizability of a given
choice function (X, f) reduces to the existence of a tuple (≿, Γ), where ≿ is
a linear order over X and Γ is an ordered attention filter, such that for every
menu A, f(A) ≿ y for every y ∈ Γ(A). The OA-rationalizability of choice
functions is referred to as the choose twice procedure and has been shown to be
equivalent to the LA-rationalizability in Richter (2020). Since for choice functions
LA-rationalizability is equivalent to GA-rationalizability, Theorem 6 and the
related results in Richter (2020) jointly demonstrate the equivalence between
GA-rationalizability and OA-rationalizability when the choice correspondence is
either a choice function or satisfies comparative richness.

5 Quantifying Departures from Rationality

In this section, we propose new axioms that explicitly quantify the departure
from rationality. We then demonstrate that these axioms lead to novel choice
models under Comparative Richness. Throughout the section, assume T ∈ N+.

Axiom 11 (Weak Sen’s α). For all A, B ∈ M(X) and distinct x, y ∈ X with
x, y ∈ B ⊆ A, if x ∈ f(A) and x /∈ f(A\{y}), then x ∈ f(B).

Axiom 12 (T -Weak Sen’s α). For all A, B, C ∈ M(X) and x ∈ X with
x ∈ B\C, C ⊆ B ⊆ A, and |C| = T , if x ∈ f(A) and for every y ∈ C,

x /∈ f(A\{y}), then x ∈ f(B).

Weak Sen’s α is equivalent to T -Weak Sen’s α when T = 1, and for all
T ∈ N+, T -Weak Sen’s α implies (T + 1)-Weak Sen’s α. Weak Sen’s α states
that if a violation of Sen’s α occurs on the choice of alternative x when y is
removed from the menu, then no other alternatives can trigger another violation
of Sen’s α on the choice of x. Thus, when both x and y are preserved in the
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menu, Sen’s α holds for x. Similarly, the T -Weak Sen’s α axiom allows for at
most T distinct alternatives that can trigger violations of Sen’s α on the choice
of any given alternative x.

To present the representations characterized by the axioms above, we will need
several definitions. For any T ∈ N+, we use ≿T to denote a generic preference
over XT . For any subset F ⊆ XT , let F |1 = {x1 ∈ X : (x1, ..., xT ) ∈ F} be the
projection of F on its first dimension.

Definition 9. For any T ≥ 2, a choice correspondence (X, f) is T -rationalizable
if there is a preference ≿T over XT such that for all A ∈ M(X), f(A) =
U≿T (AT )|1. Such ≿T is said to T -rationalize (X, f).

T -rationalizability captures the situation in which the DM’s evaluation of
each alternative depends on the presence of other feasible alternatives in the
menu. In particular, (x1, ..., xT ) ≿T (y1, ..., yT ) means that the desirability of
x1, given the feasibility of {xt}T

t=2, is weakly higher than the desirability of y1,
given the feasibility of {yt}T

t=2. The parameter T in Definition 9 represents the
maximum number of alternatives that can simultaneously influence the DM’s
evaluation of a given alternative. The alternatives chosen by the DM are those
that maximize this preference.

Theorem 8. If (X, f) satisfy Comparative Richness, then the following
statements are equivalent for all T ∈ N+:

(1) (X, f) satisfies T -Weak Sen’s α;
(2) (X, f) is (T + 1)-rationalizable;
(3) For all menu A and x ∈ f(A), there is a menu B ⊆ A with |B| ≤ T + 1

such that A ▷◁f B and x ∈ f(B).

We have several remarks on Theorem 8. First, without Comparative
Richness, (T + 1)-rationalizability alone is sufficient for T -Weak Sen’s α. Second,
without Comparative Richness, T -Weak Sen’s α alone does not imply (T + 1)-
rationalizability. We provide an example in the Online Appendix.

We note that the “choice with attraction effects” example in the Introduction
and Section 3.2 satisfies Weak Sen’s α and Comparative Richness. Clearly, it is
2-rationalizable by the utility function v∗ : R2n → R, which satisfies that for all
x, y ∈ Rn, v∗(x, y) = v+(x) if x dominates y, and v∗(x, y) = v(x) otherwise.

In fact, 2-rationalizability can be naturally applied to choice over risk
and uncertainty. In many theories on nontransitive preferences over lotteries,
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including the salience theory (Bordalo, Gennaioli and Shleifer, 2012) and regret
theory (Bell, 1982; Loomes and Sugden, 1982; Fishburn, 1989), a nontransitive
preference ≿ over the space of lotteries X is represented by some function
v : X2 → R such that x ≿ y if and only if v(x, y) ≥ v(y, x). This can be viewed
as a special case of the 2-rationalizability restricted on binary menus. To see
this, consider some function u : X2 → R ∪ {−∞} such that for all x, y ∈ X,
u(x, x) = −∞ and u(x, y) = v(x, y) if x ̸= y. The choice correspondence
that is 2-rationalized by u induces the same choices in binary menus as v.
In this regard, our notion of 2-rationalizability provides a straightforward
extension of these nontransitive preferences to choice correspondences over
general menus. By defining v(x′, x′) = −∞ for every x′ ∈ X, in each menu
A, an alternative x is chosen in A if and only if for every alternative y ∈ A,
maxz∈A v(x, z) ≥ maxw∈A v(y, w).

Conversely, we can start with a choice correspondence that is 2-rationalized
by some u, and study its implications on binary menus by considering the
nontransitive preferences v(x, y) = max{u(x, x), u(x, y)}. The following example
demonstrates that a quadratic form for u captures the idea of disappointment
aversion. The nontransitive preference induced by u intuitively exhibits both
Allais-type behavior and preference reversal. Our example highlights a new
approach to modeling nontransitive preferences over lotteries.

Choice with bounded disappointment aversion. Let X be the set of simple
lotteries over R—i.e., each lottery x ∈ X takes the form of x = (x1, p1; ...; xn, pn)
with the interpretation that x yields monetary payoff xk with probability pk for
each k ∈ {1, ..., n}. Consider the utility function u : X2 → R such that for any
x, y ∈ X with x = (x1, p1; ...; xn, pn) and y = (y1, q1; ...; ym, qm), we have

u(x, y) =
n∑

k=1
pkv(xk) −

n∑
i=1

m∑
j=1

piqjλ min{max{v(yj) − v(xi), 0}, L}, (1)

where L > 0, λ ∈ (0, 1), and v : R → R is strictly increasing and satisfies v(R) =
R.32 The term V (x) := ∑n

k=1 pkv(xk) is the DM’s normative utility, and the
second term D(x, y) := ∑n

i=1
∑m

j=1 piqjλ min{max{v(yj) − v(xi), 0}, L} captures
the DM’s disappointment aversion, where L is the maximal disappointment that
the DM can perceive. The disappointment comes from the risk of the lottery,
and thus the DM can perceive disappointment even when there is only one
feasible choice—i.e., D(x, x) > 0 if x is not a degenerate lottery. Let f be the

32Our functional form is a special case of the general quadratic form introduced in footnote
45 of Machina (1982).
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choice correspondence that is 2-rationalized by u.
We show that f satisfies Comparative Richness. For any given lottery x, the

lottery y = (y1, 1/2; y2, 1/2) is independent of x as long as v(y1) is sufficiently
large and v(y2) is sufficiently small. This is because in this case, we have
D(x, x) ≤ λL/4 < λL/2 = D(x, y) and D(y, y) = λL/4 < λL/2 = D(y, x),
which indicates that y plays no role in evaluating x, and vice versa. To show
Comparative Richness, consider any menu A and a submenu B contained in
A. The alternative y = (y1, 1/2; y2, 1/2) that satisfies A ⊥ {y} and u(y, y) =
maxx,z∈B u(x, z) meets the requirement of Comparative Richness.

Our first observation of f is that it accommodates the Allais paradox (Allais,
1953). Specifically, consider lotteries x = (4000, 4/5; 0, 1/5), y = (3000, 1),
z = (4000, 1/5; 0, 4/5), and w = (3000, 1/4; 0, 3/4). Observe that z and w

are mixtures of x and y with lottery (0, 1) under the same mixture ratio 1/4,
respectively. While the Independence Axiom asserts that x is chosen over y if
and only if z is chosen over w, the Allais paradox intuitively suggests that even
for DMs who choose z in {z, w}, they still tend to choose y in {x, y}, since y is
a certain outcome.33 We note that our choice correspondence f , like many other
theories of nontransitive preferences, accommodates the Allais paradox. For
instance, when v(0) = 0, v(3000) = 100, v(4000) = 130, λ = 1/2, and L = 500,
we have f({x, y}) = {y} and f({z, w}) = {z}.

Our second observation is that f accommodates the phenomenon of preference
reversal (Lichtenstein and Slovic, 1971; Lindman, 1971; Grether and Plott, 1979).
The phenomenon refers to the situation in which for two lotteries the DM
attaches the same certainty equivalent to, she prefers to choose the low-risk
lottery over the high-risk one. Formally, consider two lotteries x = (a, p; 0, 1 − p)
and y = (b, q; 0, 1 − q) such that a > b > 0 and q > p. Lottery x is the high-risk
lottery and y is the low-risk one. Suppose that for some lottery z = (c, 1),
we have f({x, z}) = {x, z} and f({y, z}) = {y, z}. Then the phenomenon of
preference reversal refers to the choice in which f({x, y}) = {y}.

In the Online Appendix, we show that the preference reversal always happens
for f when L is relatively large. Here, we give a numerical example for
demonstration. For simplicity, assume that for all a ∈ R, v(a) = a. Let
x = (30, 1/2; 0, 1/2), y = (21, 2/3; 0, 1/3), z = (12, 1), λ = 1/2, and L = 500.
We have u(z, z) = u(x, z) = 12 > u(x, x) = 45/4 > u(z, x) = 15/2 and
u(z, z) = u(y, z) = 12 > u(y, y) = 35/3 > u(z, y) = 9. Note that when the

33Evidence of the Allais paradox can be found in Kahneman and Tversky (1979).
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DM is indifferent between a risky lottery and a certain payoff, she takes the
certain payoff as the reference point because she can minimize her perceived
disappointment by doing so. For the comparison between the two risky lotteries,
we have u(y, y) > u(x, y) = 23/2 > u(x, x) > u(y, x) = 10. Hence, the DM
minimizes her perceived disappointment by taking the low-risk lottery as the
reference point. Note that the two risky lotteries generate the same u when the
certain payoff is taken as the reference point, and the high-risk lottery’s u is
decreased more after the reference point shifts from the certain payoff to the
low-risk lottery. Thus, the low-risk lottery is chosen in the binary menu {x, y}.

We end this section by noting that Sen’s β can be weakened in a similar
fashion. In the Online Appendix, we formally define T -Weak Sen’s β and
demonstrate that even with Comparative Richness, T -Weak Sen’s α is not
equivalent to T -Weak Sen’s β. We leave the characterization of T -Weak Sen’s β

to future research.

Appendix

Proof of Theorem 1. First, we prove statements (1) and (2). Assume f(A)∩Ai ̸=
∅, and consider an arbitrary x ∈ A\Ai. For each y ∈ f(A) ∩ Ai, x ⊥ y implies
y ∈ f(A\{x}) ∩ Ai. Thus, f(A) ∩ Ai ⊆ f(A\{x}) ∩ Ai. By induction, we have
f(B) ∩ Ai ̸= ∅. Furthermore, pick some y ∈ f(A) ∩ Ai, and x ⊥ y implies
f(A\{x}) ⊆ f(A). Thus, f(A) ∩ Ai = f(A\{x}) ∩ Ai. By induction, we have
f(A) ∩ Ai = f(Ai). To see statement (3), note that since {Ak}k∈I is an MIC,
{Ak}k∈I\{i,j} ∪ {Ai ∪ Aj} is also an MIC. By statement (1), f(A) ∩ (Ai ∪ Aj) ̸= ∅
and f(B)∩(Ai∪Aj) ̸= ∅ implies f(A)∩(Ai∪Aj) = f(B)∩(Ai∪Aj) = f(Ai∪Aj).
Therefore, f(B) ∩ Aj ̸= ∅ implies f(A) ∩ Aj ̸= ∅.

Proof of Theorem 2. Let ⊵f be the shadow order of choice correspondence (X, f).
If ⊵f is a preference, then for any two menus A and B with B ⊆ A, we can
find x ⊥ A and y ⊥ A such that A ≈f x and B ≈f y. The existence of such
an alternative y implies Comparative Richness. For the rest of the proof, we
assume that Comparative Richness holds.

First, we show statement (1). Consider two menus A and B. We want to
show that for all x, y ∈ X with x ≈fA and y ≈fB such that {{x}, {y}, A ∪ B}
is an MIC, we have that A ⊵f B implies x ∈ f({x, y}) (the inverse is true by the
definition of ⊵f). To see this, consider any such alternatives x and y and note
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that by A ⊵f B, there exist x̂, ŷ ∈ X such that {{x̂}, {ŷ}, A ∪ B} is an MIC
with x̂ ≈fA, ŷ ≈fB, and x̂ ∈ f({x̂, ŷ}). By Comparative Richness, we can find
z, w ∈ X such that {{x}, {y}, {z}, {w}, A ∪ B} and {{x̂}, {ŷ}, {z}, {w}, A ∪ B}
are both MICs with z ≈fA and w ≈fB. Consider the following MICs:

ΠA = {{x}, {y}, {z}, {w}, A}, ΠB = {{x}, {y}, {z}, {w}, B},

ΩA = {{x̂}, {ŷ}, {z}, {w}, A}, ΩB = {{x̂}, {ŷ}, {z}, {w}, B}.

Let ⊵ΠA
,⊵ΠB

,⊵ΩA
, and ⊵ΩB

be the preferences that rationalize f on the four
MICs, respectively. Since x ≈f A and x ⊥ A, by Corollary 1, we have A ▷◁ΠA

{x}.
Similarly, we have

A ▷◁ΠA
{z}, A ▷◁ΩA

{x̂}, A ▷◁ΩA
{z}, B ▷◁ΠB

{y}, B ▷◁ΠB
{w},

B ▷◁ΩB
{ŷ}, B ▷◁ΩB

{w}, {x̂} ⊵ΩA
{ŷ}, and {x̂} ⊵ΩB

{ŷ}.

By transitivity of those preferences, we have {x} ▷◁ΠA
{z}, {z} ⊵ΩA

{ŷ}, {ŷ} ▷◁ΩB

{w}, and {w} ▷◁ΠB
{y}. By Corollary 1, we have {x} ▷◁ΠA

{z}, {z} ⊵ΩA
{w}

({z} ⊵ΠA
{w}), and {w} ▷◁ΠA

{y}. Thus, {x} ⊵ΠA
{y}, i.e., x ∈ f({x, y}).

Next, we show that ⊵f is a preference. The completeness of ⊵f is guaranteed
by Comparative Richness. To see the transitivity of ⊵f, consider three menus
A, B, and D such that A ⊵f B and B ⊵f D. We show A ⊵f D. By Comparative
Richness, we can find x, y, z ∈ X such that Π = {{x}, {y}, {z}, A ∪ B ∪ D} is
an MIC, x ≈f A, y ≈f B, and z ≈f D. Let ⊵Π rationalize f on Π. Since A ⊵f B

and B ⊵f D, we have {x} ⊵Π {y} and {y} ⊵Π {z}. Thus {x} ⊵Π {z}, which
implies x ∈ f({x, z}). By the above argument, we have A ⊵f D.

To see statement (2), consider an MIC Π = {Ak}k∈I . For any t, r ∈ I, by
Comparative Richness, we can find xt, xr ∈ X such that xt ≈f At, xr ≈f Ar, and
Ω = {{xt, xr}} ∪ {Ak}k∈I is an MIC. Clearly, At ▷◁Ω {xt} and Ar ▷◁Ω {xr}. If
At ⊵f Ar, then xt ∈ f({xt, xr}), which implies {xt} ⊵Ω {xr}. Thus, At ⊵Ω Ar.
If At ▷f Ar, then xr /∈ f({xt, xr}), which implies {xt} ▷Ω {xr}. Thus, At ▷Ω Ar.
Since ⊵Ω and ⊵f agree on {At, Ar}, so do ⊵Π and ⊵f. We are done.

Finally, we show statement (3). Consider two menus A and B with B ⊆ A.
We first show that A ⊵f B. WLOG, assume A = B ∪ {z} for some z ∈ X\B.
Suppose to the contrary that B ▷f A. By Comparative Richness, we can find
x ∈ X such that x ⊥ A and x ≈f A (i.e., A ▷◁f {x}). Since B ▷f A, we have
B ▷f {x}, and thus x /∈ f(B ∪ {x}). However, x ∈ f(A ∪ {x}) contradicts x ⊥ z.

Next, assume A ▷◁f B, and we show f(B) ⊆ f(A). WLOG, assume A = B ∪
{z} for some z ∈ X\B. Suppose to the contrary that there is x ∈ f(B)\f(A). By
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Comparative Richness, there is y ∈ X such that y ⊥ A and {y} ▷◁f A ▷◁f B. By
statement (2), we have y ∈ f(A∪{y})∩f(B∪{y}). By statement (1) of Theorem
1, x ∈ f(B ∪ {y})\f(A ∪ {y}). Since y ⊥ z, we have f(B ∪ {y}) ⊆ f(A ∪ {y}),
which contradicts x ∈ f(B ∪ {y})\f(A ∪ {y}).

Proof of Proposition 3. Consider the ⊵-canonical extension (Y, g) of (X, f). Let
Φ : Y \X → M(X) be the bijection defined in Definition 4. We first argue
that for all x ∈ Y and y ∈ Y \X, we have x ⊥ y. WLOG, assume x ̸= y. By
the construction of g, we have for all A ∈ M(Y ), either g(A ∪ {y}) = g(A), or
g(A∪{y}) = g(A)∪{y}, or g(A∪{y}) = {y}. Thus, if x ∈ A and x ∈ g(A∪{y}),
then x ∈ g(A) ⊆ g(A ∪ {y}). Inversely, consider A ∈ M(Y ) such that x /∈ A,
y ∈ A, and y ∈ g(A∪{x}). By y ∈ g(A∪{x}), we have Φ(y) ⊵ (A∪{x})∩X (if
(A ∪ {x}) ∩ X ̸= ∅) and for all z ∈ (A ∪ {x})\X, Φ(y) ⊵ Φ(z). By monotonicity
of ⊵, we have Φ(y) ⊵ A ∩ X (if A ∩ X ̸= ∅), and thus y ∈ g(A). What remains
to be shown is that g(A) ⊆ g(A ∪ {x}). Note that for all z ∈ g(A)\X, we have
Φ(z) ▷◁ Φ(y), and thus z ∈ g(A ∪ {x}). If g(A) ∩ X = ∅, then we are done. If
g(A) ∩ X ̸= ∅, then A ∩ X ▷◁ Φ(y) ⊵ (A ∪ {x}) ∩ X. By monotonicity of ⊵, we
have A ∩ X ▷◁ Φ(y) ▷◁ (A ∪ {x}) ∩ X, and thus f(A ∩ X) ⊆ f((A ∪ {x}) ∩ X).
Since g(A) ∩ X = f(A ∩ X) and g(A ∪ {x}) ∩ X = f((A ∪ {x}) ∩ X), we have
g(A) ⊆ g(A ∪ {x}). The claim that x ⊥ y is shown.

To see that Comparative Richness holds for g, consider A, B ∈ M(Y ) with
B ⊆ A. If there is x ∈ g(B)\X, then x ≈g B and x ⊥ A. If g(B) ⊆ X, then let
x ∈ Y \X satisfy Φ(x) = B ∩ X, and we have g(B ∪ {x}) = g(B) ∪ {x}. Thus,
x ≈g B and x ⊥ A. The Comparative Richness of g is shown. That ⊵g coincides
with ⊵ on M(X) is evident by the construction of the canonical extension.

Proof of Theorem 3. Clearly, statement (4) implies (1), (2), and (3).

(5) ⇒ (4): We argue that (5) indicates that x ∈ f(A) if and only if for all y ∈ A,
{x} ⊵f {y}—i.e., the preference ≿ that agrees with ⊵f restricted on singleton
menus rationalizes f . To see this, assume first that x ∈ f(A). By (5), we have
for all y ∈ A, {x} ▷◁f A ⊵f {y} (by monotonicity of ⊵f). Inversely, if for all
y ∈ A, {x} ⊵f {y}, then pick some y′ ∈ f(A), and we have {x} ⊵f {y′} ▷◁fA.
By monotonicity of ⊵f, {x} ▷◁f A and thus x ∈ f(A).

(1), (2), or (3) ⇒ (5): In the remaining proof, we fix a menu A and an alternative
x ∈ f(A). We also fix some z ∈ X with z ⊥ A and A ≈f {z}. The selection
of z ensures z ▷◁f A. First, assume statement (1). Since x ∈ f(A), we have
x ∈ f(A ∪ {z}). Since z ∈ f(A ∪ {z}), by Binary Sen’s α, we have f({x, z}) =
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{x, z}. Thus, {x} ▷◁f {z} ▷◁f A. Second, assume statement (2). Consider
w ∈ X such that w ⊥ A ∪ {z} and {x} ▷◁f {w}. Since f({x, w}) = {x, w}
and x ∈ f(A ∪ {z, w}), by Binary Sen’s β, we have w ∈ f(A ∪ {z, w}). Thus,
{x} ▷◁f {w} ▷◁f {z} ▷◁f A. Finally, assume statement (3). For all y ∈ A,
z ∈ f({y, z}). Thus, z ∈ W(A∪{z}) ̸= ∅, and we have f(A∪{z}) = W(A∪{z}).
Since x ∈ f(A ∪ {z}), x ∈ W(A ∪ {z}), which further implies x ∈ f({x, z}). It
follows that {x} ▷◁f{z} ▷◁fA.

Proof of Theorem 4. It remains to show that statement (2) implies (3). Re-
ducibility implies that we can remove unchosen alternatives sequentially such
that for every menu A, f(f(A)) = f(A). To see A ▷◁f f(A), consider z ∈ X

such that {z} ▷◁f A and z ⊥ A. Since f(A ∪ {z}) = f(A) ∪ {z}, we have
f(f(A) ∪ {z}) = f(A) ∪ {z}. Therefore, f(A) ▷◁f {z} ▷◁f A.

Proof of Theorem 5. It remains to show that statement (1) implies (3). Let
(X, f) satisfy Comparative Richness and WrARP. Define preference ≿ over X

such that for all x, y ∈ X, x ≿ y if and only if {x} ⊵f {y}.
We show that if x ∈ f(A) and A ▷f {x}, then for all y ∈ X with {y} ▷◁f A,

y ∈ J+
≿ (x). Suppose to the contrary that we can find x ∈ f(A) and y, z ∈ X

such that {y} ▷◁f A ▷f {z} ▷f {x}. Comparative Richness ensures that we can
assume y ⊥ z and {y, z} ⊥ A. It follows that x /∈ f({x, z}), x ∈ f(A ∪ {z}),
and z /∈ f(A ∪ {z}), which contradicts WrARP.

Next, we construct γ. For any menu A, if x ∈ A satisfies J+
≿ (x) = ∅, let

γ(x, A) = x. For x ∈ A with J+
≿ (x) ̸= ∅, (i) if A ▷◁f {x}, then let γ(x, A) = x;

(ii) if A ▷◁f {y} for some y ∈ J+
≿ (x) and x /∈ f(A), then let γ(x, A) = x; (iii)

otherwise, let γ(x, A) = y for some y ∈ J+
≿ (x).

To see that (≿, γ) satisfies condition (2) in Definition 5, note that if x ∈ A ⊆
B and γ(x, A) = y ∈ J+

≿ (x), then we have either (i) A ▷f {y} or (ii) A ▷◁f {y}
and x ∈ f(A). Thus, either B ▷f {y}, which directly implies γ(x, B) ∈ J+

≿ (x),
or B ▷◁f A ▷◁f {y}. By monotonicity of ⊵f, the latter case implies x ∈ f(B), and
thus γ(x, B) ∈ J+

≿ (x). To see that (≿, γ) satisfies condition (3) in Definition 5,
assume to the contrary that there are menus A and B and x, y ∈ A ∩ B with
x ∼ y, γ(x, A) = x, γ(y, B) = y, γ(x, B) ∈ J+

≿ (x), and γ(y, A) ∈ J+
≿ (y). By the

construction of γ, we have A ▷◁f B ▷◁f {z} for some z ∈ J+
≿ (x), f(A) ∩ {x, y} =

{y}, and f(B) ∩ {x, y} = {x}. This contradicts WrARP.
Finally, note that our construction ensures that for every menu A and every

x ∈ A, A ⊵f {γ(x, A)}, and x ∈ f(A) if and only if A ▷◁f {γ(x, A)}. Thus,
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(≿, γ) MO-rationalizes f .

Proof of Theorem 6. To see the necessity, suppose that f is GA-rationalized by
(Γ, τ,≿). For a given menu A, consider x ∈ U≿(A). We argue that x satisfies the
statement of WARP(LA)∗. To see this, consider menu B such that f(B)∩A ≠ ∅.
If x /∈ Γ(B), then Γ(B\{x}) = Γ(B), and we have f(B) = f(B\{x}). Thus,
f(B) ̸= f(B\{x}) implies x ∈ Γ(B). By f(B) ∩ A ̸= ∅, there exists y ∈ A such
that y ≿ τ(Γ(B)). Thus, we have x ≿ τ(Γ(B)) and x ∈ f(B).

For the sufficiency part, define xPy if there exists menu A such that x, y ∈ A,
x ∈ f(A), y /∈ f(A), and f(A) ̸= f(A\{y}). Following the proof of Lemma 1
in MNO, we can show that P is acyclic. By the Szpilrajn extension theorem,
there is a preference ≿ over X such that xPy implies x ≻ y. For each menu A,
define Γ(A) = f(A) ∪ {x ∈ A : ∀y ∈ f(A), y ≻ x}. To see that Γ is an attention
filter, note that for every menu A and every z ∈ A\Γ(A), we have z /∈ f(A) and
z ≿ x for some x ∈ f(A). Therefore, we should have f(A\{z}) = f(A) since
otherwise, we have for all x ∈ f(A), xPz, which is a contradiction. The fact
that z ≿ x for some x ∈ f(A) and f(A) = f(A\{z}) implies Γ(A) = Γ(A\{z}).

Finally, we construct τ . For every menu B such that B = Γ(A) for some
menu A, let τ(B) be an arbitrary element of {x ∈ f(A) : ∀y ∈ f(A), y ≿ x}. For
any other menu B, define τ(B) arbitrarily. Note that τ is well defined, since for
any two menus A and A′ with Γ(A) = Γ(A′) = B, we have f(A) = f(B) = f(A′).
Clearly, f is GA-rationalized by (≿, Γ).

Proof of Theorem 7. Since OA-rationalizability implies GA-rationalizability, it
remains to show that GA-rationalizability implies OA-rationalizability. Consider
a tuple (≿, Γ, τ) and assume that it GA-rationalizes f . By the proof of Theorem
6, assume that for every menu A, Γ(A) = f(A) ∪ {y ∈ A : ∀x ∈ f(A), x ≻ y}.
First, we show that Γ(A) ▷◁fA. To see this, consider z ∈ X such that z ⊥ A and
{z} ▷◁fA. We have f(A ∪ {z}) = f(A) ∪ {z}, and thus Γ(A ∪ {z}) ⊆ Γ(A) ∪ {z}.
It follows that Γ(A ∪ {z}) ∩ A ⊆ Γ(A). Since f(Γ(A ∪ {z})) = f(A ∪ {z}), we
have (Γ(A ∪ {z}) ∩ A) ▷◁f{z} ▷◁fA. By monotonicity of ⊵f, we have Γ(A) ▷◁fA.

We proceed to show that Γ is an ordered attention filter, and we are done.
For two distinct menus C and D, define C ▷∗ D if one of the following occurs:

(i) C = Γ(C) and D ̸= Γ(D); (ii) C = Γ(C), D = Γ(D), and C ▷f D;
(iii) C = Γ(C), D = Γ(D), C ▷◁fD, and f(D) ⊊ f(C);
(iv) C = Γ(C), D = Γ(D), C ▷◁fD, f(C) = f(D), and D ⊊ C.
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For any menu A, we show that B ∈ M(A) and B ̸= Γ(A) implies Γ(A) ▷∗ B.
To see this, note that since Γ(Γ(A)) = Γ(A) ▷◁fA ⊵f B, we only need to consider
the case in which Γ(B) = B ▷◁f Γ(A). The monotonicity of ⊵f further implies
f(B) ⊆ f(A) = f(Γ(A)). Thus, we can further assume f(B) = f(A). We have

B = Γ(B) = f(B) ∪ {x ∈ B : ∀y ∈ f(B), y ≻ x}

= f(A) ∪ {x ∈ B : ∀y ∈ f(A), y ≻ x}

⊆ f(A) ∪ {x ∈ A : ∀y ∈ f(A), y ≻ x} = Γ(A)

Since B ̸= Γ(A) and B ⊆ Γ(A), by (iv), we have Γ(A) ▷∗ B. Our construction
ensures that the binary relation ▷∗ is acyclic. Thus, there is a linear order ⊵

over menus that extends ▷∗, with which we have Γ⊵ = Γ.

Proof of Theorem 8. (3) ⇒ (2): For simplicity, let S = T + 1. We construct a
preference ≿S over XS as follows. For any two vectors of alternatives (xk)S

k=1

and (yk)S
k=1, let A′ = ∪S

k=1{xk} and B′ = ∪S
k=1{yk}. Define any ≿S such that

(i) when x1 ∈ f(A′) and y1 /∈ f(B′), we have (xk)S
k=1 ≻S (yk)S

k=1, and (ii) when
x1 ∈ f(A′) and y1 ∈ f(B′), we have (xk)S

k=1 ≿S (yk)S
k=1 if and only if A′ ⊵f B′.

We argue that any ≿S that satisfies (i) and (ii) S-rationalizes f . To see this,
consider an arbitrary menu A. On the one hand, if x is chosen in A, then by
statement (3), we can find some submenu B of A such that x is chosen in B

and A ▷◁f B with B = {x, x1, ..., xk} for some k ≤ T . Our construction of ≿S

and the monotonicity of ⊵f ensures that the vector (x, x1, ..., xk, x, ..., x) ∈ XS

maximizes ≿S in AS. On the other hand, if some vector (x, x1, ..., xT ) maximizes
≿S in AS, then the construction of ≿S implies x ∈ f((∪T

k=1{xk}) ∪ {x}) and
(∪T

k=1{xk}) ∪ {x} ▷◁f A. By the monotonicity of ⊵f, we have x ∈ f(A).
(2) ⇒ (1): Assume that f is S-rationalized by ≿S over XS, and consider an

arbitrary x ∈ f(A). There is a vector of alternatives (xk)S
k=1 ∈ U≿S (AS) such

that x1 = x. Thus, for any y ̸= x, x /∈ f(A\{y}) implies y ∈ C = ∪S
k=2{xk}.

For any menu B with C ⊆ B ⊆ A, (xk)S
k=1 ∈ U≿S (AS) implies x ∈ f(B). Since

|C| ≤ T , T-Weak Sen’s α holds.
(1) ⇒ (3): Consider an arbitrary x ∈ f(A). Pick z ∈ X with z ⊥ A and

{z} ▷◁fA. If z = x, then we are done. Consider the case in which z ̸= x. Note
that x, z ∈ f(A∪{z}). Define C = {y ̸= x : x /∈ f((A∪{z})\{y})}. Since x ⊥ z,
z /∈ C. By statement (1), we have |C| ≤ T and x ∈ f(C ∪ {x} ∪ {z}). Since
z ⊥ C ∪ {x}, C ∪ {x} ▷◁f {z}. Therefore, C ∪ {x} ▷◁fA and x ∈ f(C ∪ {x}).
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Online Appendix (for online publication only)

In this note, we list a series of examples and results that we omitted in the main
text.

Examples related to MP-rationalizability

Our first example shows that MP-rationalizability and Comparative Richness
together cannot imply rationalizability.

Example 1. Let X = {x1, x2, x3, y1, y2, y3, z}. Consider a linear order ⊵ over
M(X) that satisfies {x1, x2, x3, z}▷{x1, x2, x3}▷{z}▷{x1, y1}▷{x1}▷{y1}▷
{x2, y2} ▷ {x2} ▷ {y2} ▷ {x3, y3} ▷ {x3} ▷ {y3} ▷ A for every other menu
A. Let f be MP-rationalized by ⊵. Clearly, f is not rationalizable, since
f({x1, x2, x3}) = {x1, x2, x3} while f({x1, x2}) = {x1}. Note that f satisfies
Comparative Richness with {{x1, x2, x3}, {y1}, {y2}, {y3}, {z}} being an MIC
and the shadow preference ⊵f satisfying {x1, x2, x3} ▷◁f{z}▷f{x1} ▷◁f{x1, x2} ▷◁f

{x1, x3} ▷◁f{y1} ▷f {x2} ▷◁f{x2, x3} ▷◁f{y2} ▷f {x3} ▷◁f{y3}.

The next example demonstrates that without Comparative Richness,
Aizerman’s axiom alone cannot imply MP-rationalizability.

Example 2. Consider X = {x, y, z} and a choice correspondence f such that
f({x, y}) = {x}, f({y, z}) = {y}, f({x, z}) = {z}, f({x, y, z}) = {x, y, z}.

This choice correspondence clearly satisfies Aizerman’s axiom. However, it
fails to be MP-rationalizable. To see this, suppose to the contrary that there
exists an implied menu preference ⊵ MP-rationalizing f . The choices made
in binary menus imply that {x} ▷ {y}, {y} ▷ {z}, and {z} ▷ {x}, which is a
contradiction.

Examples related to MO-rationalizability

In our next example, we present a choice correspondence that is MO-
rationalizable and satisfies Comparative Richness but fails to be rationalizable.

Example 3. Let X = {x, y, z, w} and consider a monotone overevaluation
system (≿, γ) over X such that w ≻ x ∼ y ∼ z, and for every menu A, (1) if
z ∈ A, then γ(z, A) = z; (2) if w ∈ A, then γ(w, A) = w; (3) if A ∩ {x, y} =
{x}, then γ(x, A) = x; (4) if A ∩ {x, y} = {y}, then γ(y, A) = y; and (5)
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if A ∩ {x, y} = {x, y}, then γ(x, A) = γ(y, A) = w. Let f be the choice
correspondence that is MO-rationalized by (≿, γ). It can easily be shown that
f satisfies Comparative Richness with {{x, y}, {z}, {w}} being an MIC and
{x, y} ▷◁f {w} ▷f {z} ▷◁f {x} ▷◁f {y}. Clearly, f is not rationalizable since
f({x, w}) = {w} and f({x, y, w}) = {x, y, w}.

The next example demonstrates that without Comparative Richness, WrARP
alone is not sufficient for MO-rationalizability.

Example 4. Let X = {x, y, z, w, r} and consider a choice correspondence f

with
f({x, y}) = {x}, f({x, y, z, w}) = {x, z, w},

and for every other menu A, f(A) = A. This choice correspondence satisfies
WrARP, since only x, z, and w are revealed to be strictly preferred to y but y is
not revealed to be strictly preferred to any alternative. However, f cannot be MO-
rationalizable. To see this, suppose to the contrary that there exists a monotone
overevaluation system (≿, γ) that MO-rationalizes f . Since y /∈ f({x, y}) but
y ∈ f({x, y, z}), we can infer that γ(y, {x, y}) = y and γ(y, {x, y, z}) ∈ J+

≿ (y).
By a similar argument, we have γ(y, {x, y, z, w}) = y and γ(y, {x, y, z, w, r}) ∈
J+
≿ (y). However, γ(y, {x, y, z}) ∈ J+

≿ (y) and γ(y, {x, y, z, w}) = y together
violate condition (2) of Definition 5.

A crucial observation from Example 4 is that for any two alternatives x

and y, WrARP alone allows for multiple rounds of violations of the WARP
between x and y when the choice menu enlarges. Specifically, consider four
menus A1 ⊆ A2 ⊆ A3 ⊆ A4 with x, y ∈ A1. WrARP alone does not rule out the
possibility that x is chosen in all four menus and y is only chosen in A2 and
A4. In this case, the WARP is violated between x and y for the menu pair A1

and A2 and the menu pair A3 and A4. However, together with Comparative
Richness, WrARP does not allow for such a choice pattern.

Examples related to limited attention

Next, we present an example that demonstrates that without Comparative
Richness, GA-rationalizability is insufficient for OA-rationalizability.

Example 5. Let X = {x, y, z, w} and consider a choice correspondence f with

f({x, y, z, w}) = {x, y, z}, f({x, y, z}) = {x},

f({x, y, w}) = {x, w}, f({y, z, w}) = {y, w}, f({x, z, w}) = {z, w},
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and for every other menu A, f(A) = A. First, we show that f is not OA-
rationalizable. Suppose to the contrary that f is OA-rationalized by (≿, Γ⊵, τ).
Since f({x, y, z, w}) = {x, y, z} ≠ f({x, y, z}), we have x ≻ w, y ≻ w, and
z ≻ w. It follows that f({x, y, w}) = {x, w} implies Γ⊵({x, y, w}) = {x, w},
f({y, z, w}) = {y, w} implies Γ⊵({y, z, w}) = {y, w}, and f({x, z, w}) = {z, w}
implies Γ⊵({x, z, w}) = {z, w}. However, those attention sets imply {x, w} ▷

{y, w} ▷ {z, w} ▷ {x, w}, which is a contradiction.
Next, we show that (X, f) is GA-rationalizable. Let ≿ be such that x ≻

y ≻ z ≻ w. Define the attention filter Γ such that Γ({x, y, w}) = {x, w},
Γ({y, z, w}) = {y, w}, Γ({x, z, w}) = {z, w}, and for every other menu A,
Γ(A) = A. Define the threshold function τ such that τ({x, y, z, w}) = z,
τ({x, y, z}) = x, and for every other menu A, τ(A) is the alternative in A

that ranks the lowest according to ≿. We can verify that the tuple (≿, Γ, τ)
GA-rationalizes f .

Examples and results related to T -rationalizability

The next example demonstrates that without Comparative Richness, Weak Sen’s
α alone does not imply 2-rationalizability.

Example 6. Let X = {x1, x2, x3, x4, y1, y2, y3, y4}. For each k ∈ {1, 2, 3, 4}, let
Ak = {xk, yk}, and let A5 = A1 and A6 = A2 (alternatives x5, y5, x6, and y6

are defined accordingly). Consider a choice correspondence f that is defined as
follows. For each k ∈ {1, 2, 3, 4} and menu A with A ⊆ Ak ∪Ak+1, (1) if Ak ⊆ A,
then f(A) = {xk}; (2) if Ak ̸⊆ A and Ak+1 ⊆ A, then f(A) = {xk+1}; (3) if
Ak ̸⊆ A, Ak+1 ̸⊆ A, and A ∩ {xk, xk+1} ≠ ∅, then f(A) = A ∩ {xk, xk+1}; and
(4) if Ak ̸⊆ A, Ak+1 ̸⊆ A, and A ∩ {xk, xk+1} = ∅, then f(A) = A ∩ {yk, yk+1}.
For every other menu B, f(B) = ⋃

k∈IB
(B ∩ Ak), where IB = {k ∈ {1, 2, 3, 4} :

B ∩ Ak+2 ̸= ∅}.
For the choice correspondence f , consider a menu A and two distinct

alternatives x, y ∈ A such that x ∈ f(A) and x /∈ f(A\{y}). There are
two possible cases: Either (1) x ∈ Ak and y ∈ Ak+2 for some k ∈ {1, 2, 3, 4}, or
(2) A = Ak ∪ Ak+1 for some k ∈ {1, 2, 3, 4} with x = xk and y = yk. In both
cases, for all menu B contained in A with x, y ∈ B, we have x ∈ f(B). Thus, f

satisfies Weak Sen’s α. However, we can easily show that if there is a preference
≿2 over X2 that 2-rationalizes f , then we have (x1, y1) ≻2 (x2, y2) ≻2 (x3, y3) ≻2

(x4, y4) ≻2 (x1, y1), which is a contradiction.
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Now, we formally define T -Weak Sen’s β and demonstrate that even with
Comparative Richness, T -Weak Sen’s α is not equivalent to T -Weak Sen’s β.

Axiom (T -Weak Sen’s β). For all A, B, C ∈ M(X) and x ∈ X, with x ̸∈ C,
C ⊆ B ⊆ A, and |C| = T , if x ∈ f(B)∩f(A) and for all y ∈ C, x ∈ f(A\{y}) ̸⊆
f(A), then f(B) ⊆ f(A).

Example 7. Let X = {xk}∞
k=1. Let ≿ and ≿′ be two linear orders on X such

that xk ≿ xl if and only if xl ≿′ xk if and only if k ≥ l. Consider a choice
correspondence f such that f(A) = U≿(A) when |A| is odd, and f(A) = U≿′(A)
when |A| is even. Consider a quasi-shadow preference of f , denoted ⊵, such
that A ⊵ B if and only if |A| ≥ |B|. Let (X̄, f̄) be the ⊵-canonical extension of
(X, f). Clearly, for all distinct x, y ∈ X̄, if {x, y} ̸⊆ X, then x ⊥ y. We show
that (X̄, f̄) satisfies 1-Weak Sen’s β, which implies that it satisfies T -Weak Sen’s
β for all T ∈ N+. Pick menus A, B and distinct x, y with x, y ∈ B ⊆ A. Suppose
x ∈ f̄(A) ∩ f̄(B) and x ∈ f̄(A\{y}) ̸⊆ f̄(A). This can only happen if x ̸⊥ y,
which implies x, y ∈ X. Furthermore, by the definition of f , x ∈ f̄(A)∩f̄(A\{y})
implies A ∩ X = {x, y}, and thus for all z ∈ A\X, {x} ⊵f̄ {z}. Since the quasi-
shadow preference satisfies {x, y} ▷{x}, we have for all z ∈ A\X, {x, y} ▷f̄ {z}.
Thus, f̄(B) = f̄(A) = f̄({x, y}) = {x}. It follows that f̄ satisfies 1-Weak Sen’s
β and thus T -Weak Sen’s β for all T ≥ 2. However, for any T ≥ 2, f is not
T -rationalizable, since the quasi-shadow preference ⊵ (i.e., ⊵f̄) cannot satisfy
statement (3) in Theorem 8.

Next, we present the result omitted in the “Choice with bounded disappoint-
ment aversion” example. Let X be the set of simple lotteries over R—i.e., each
lottery x ∈ X takes the form of x = (x1, p1; ...; xn, pn) with the interpretation
that x yields monetary payoff xk with probability pk for each k ∈ {1, ..., n}.
Consider the utility function u : X2 → R such that for any x, y ∈ X with
x = (x1, p1; ...; xn, pn) and y = (y1, q1; ...; ym, qm), we have

u(x, y) =
n∑

k=1
pkv(xk) −

n∑
i=1

m∑
j=1

piqjλ min{max{v(yj) − v(xi), 0}, L},

where L > 0, λ ∈ (0, 1), and v : R → R is strictly increasing and satisfies
v(R) = R.

Let f be a choice correspondence that is 2-rationalized by u defined above.
The following proposition shows that f accommodates the phenomenon of
preference reversal—i.e., for two lotteries the DM attaches the same certainty
equivalent to, she strictly prefers the low-risk lottery to the high-risk one.
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Proposition. Let f be a choice correspondence that is 2-rationalized by u

defined above. Consider three lotteries x = (a, p; 0, 1 − p), y = (b, q; 0, 1 − q),
and z = (c, 1) such that a > b > c > 0, q > p, and L ≥ v(a) − v(0). If
f({x, z}) = {x, z} and f({y, z}) = {y, z}, then f({x, y}) = {y}.

Proof. First note that u(z, z) > u(z, x) and u(z, z) > u(z, y). Thus, the DM
evaluates z according to u(z, z) in both {x, z} and {y, z}. By f({x, z}) = {x, z},
we have pv(a) + (1 − p)v(0) > v(c), since otherwise u(x, x) − u(z, z) < 0 and
u(x, z)−u(z, z) < 0. Thus u(x, z)−u(x, x) = λ(1−p)[pv(a)+(1−p)v(0)−v(c)] >

0, and f({x, z}) = {x, z} implies u(x, z) = u(z, z). By a similar argument,
we have qv(b) + (1 − q)v(0) > v(c) and u(y, z) = u(z, z). The condition
u(x, z) = u(y, z) = u(z, z) implies ∆ := pv(a) + (1 − p)v(0) − qv(b) − (1 −
q)v(0) = λ(q − p)[v(c) − v(0)] > 0. Next, observe that u(y, y) − u(y, x) =
λ(1 − q)∆ + λpq[v(a) − v(b)] > 0 and u(x, y) − u(x, x) = λ(1 − p)∆ > 0. Thus,
the DM’s choice in {x, y} is determined by the sign of u(x, y) − u(y, y). Since
u(x, y) − u(y, y) = λ(q − p)[v(c) − (1 − q)v(0) − qv(b)] < 0, f({x, y}) = {y}.
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